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Abstract. In the first part of this paper, we derive an infinite dimensional
partial differential equation which describes an economic equilibrium in a model
of storage which includes an infinite number of non-atomic agents. This equation
has the form of a mean field game master equation. The second part of the paper
is devoted to the mathematical study of the Hamilton-Jacobi-Bellman equation
from which the previous equation derives. This last equation is both singular
and set on a Hilbert space and thus raises new mathematical difficulties.

Contents

1. Introduction 2
2. A toy model for storage in a large number of separated units 2
2.1. Description of the model 2
2.2. The equilibrium equations 3
2.3. The limit equations 4
3. Notation and mathematical formulation of the problem 5
3.1. Preliminary results 6
3.2. The quadratic case 6
3.3. The deterministic case 7
3.4. Counterexamples to the time continuity of the solution of the

deterministic problem 9
3.5. A priori estimates 10
3.6. A formal change of variable 13
4. Existence and uniqueness of solutions 14
4.1. Existence 14
4.2. Uniqueness 16
Acknowledgments 17
References 18

1 : CMAP, Ecole Polytechnique, UMR 7641, 91120 Palaiseau, France
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3 : Collège de France, 3 rue d’Ulm, 75005, Paris, France .

1



1. Introduction

In this paper, we study a particular infinite dimensional Hamilton-Jacobi-Bellman
(HJB in short) equation which arises in the modeling of an economic equilibrium
problem. This problem, of a new type, arises from he interaction of a large number
of facilities of storage between each other. The description of this model is the
subject of the first part of this paper while the second one is concerned with a
mathematical analysis of the HJB equation yielded by this modeling part.

The model which produces the equation of interest is concerned with the storage
of a good in an infinite number of sites. At each site, an equilibrium takes place
between supply, demand, storage and carriers who can bring the good from one
site to the other.

Writing the equilibrium equations for the transfer of goods leads to an equation
of the form of a Mean Field Game (MFG for short) master equation. We refer to
[16, 7, 2, 3] for more details on MFG master equations and to [15, 8, 9] for more
on MFG. Let us insist on the fact that the MFG master equation arising from
our modeling is not of the exact nature of most of the master equations studied
in the literature because i) no precise game between the players is written, ii) the
state variable is not the repartition of agents in the state space but rather the
repartition of the product (or the good) in the state space. The fact that master
equations can describe economic equilibrium outside of the usual MFG setting has
already been remarked in [5, 1] and we believe it is a general feature of equilibrium
models.

Since we are considering an infinite number of sites, the associated master equa-
tion is set on a Hilbert space. Quite remarkably, this equation derived from a HJB
equation, which is thus naturally associated to the problem of a social planner.
We focus our mathematical study on this singular HJB equation on a Hilbert space.

The study of HJB equations on Hilbert space dates back to [11, 12, 13, 19].
Quite recently it has attracted quite a lot of attention, see for instance [14, 6, 10].
In this paper, we provide a study of our equation relying on finite dimensional
approximations of the limit problem.

2. A toy model for storage in a large number of separated units

2.1. Description of the model. There are N ≥ 2 sites, one good and several
populations of agents. On each site, there are local consumers and suppliers, local
storage, and arbitrageurs. There are also carriers who transfer the good from site
n to site n+ 1, and vice versa ; moreover, N + 1 is identified with 1.

These agents interact through local markets, one market at each site. We denote
by pn,t the price of the good on the site n at time t, and by kn,t the level of storage
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of the good on the site n at time t. In our model, we assume that kn,t can take
any positive or negative value. In the real world, storage is bounded : the low
bound is often 0 while the upper bound is due to physical or technical capacities.
Moreover, in many cases, for operational reasons, there is a high targeted level of
storage. In these cases, our level of storage of kn,t would represent the difference
between the actual level of storage and this high targeted level. Introducing lower
and upper bounds for the storage, our model would become both more realistic,
more interesting and much more difficult from a mathematical viewpoint as was
highlighted in [1]. However the focus of the present paper is different, we want to
show the effect that a multitude of sites of storage can have on the price.

Apart from shocks which are described below, the consumption flows are sup-
posed to be given by demand functions Dn(pn,t) and the supply flows are supposed
to be given by supply functions Sn(pn,t). Additionally we assume that there are
shocks on supply and demand so that the net supply, during a time interval of
length dt, is given by

(2.1) (Sn(pn,t)−Dn(pn,t))dt+ σdWn,t,

where (Wn)n≥1 is a collection of i.i.d. Brownian motions on a standard probability
space.

2.2. The equilibrium equations. We denote by fn,t the, algebraic, flow of trans-
fer from n to n + 1 at time t. We assume that the global cost of transfer is given
by c

2
f 2
n,t. Transfers are assumed to be fast enough, so that at equilibrium, the

marginal cost of transfer is equal to the difference of prices in sites n and n+ 1

(2.2) cfn,t = pn+1,t − pn,t.

Arbitrageurs own the stored goods. The global cost of storage is given by a
function gn(kn,t). Arbitrageurs are assumed to be risk neutral and to discount
their future revenues at the rate r ≥ 0, hence, at equilibrium the following holds

(2.3) pn,t = E[pn,t+dt]e
−rt − g′n(kn,t),

where the expectations is taken with respect to the collection of independent Brow-
nian motions. Indeed, if the price pn,t is lower than the right hand side, then the
arbitrageurs are incentivized to buy at time t, pay the cost to store the good, and
then sell it at time t + dt. Note that the previous relation indeed holds because
there is no constraint on the storage. If there were state constraints on the storage,
then the situation would be closer to the one studied in [1], and only an inequality
would hold when kn,t reaches a constraint.

In this economy, the state of the world is the level of storage at each sites
K = (kn)1≤n≤N . Hence, we look for an equilibrium described by prices (pn)1≤n≤N
of the form pn = pn(K). Thanks to (2.3), such functions pn have to satisfy at

3



equilibrium

(2.4)

0 = −rpn(K) +
σ2

2

N∑
i=1

∂kikipn(K)− g′n(kn)+

+
N∑
i=1

∂kipn(K)

[
Sn(pn)−Dn(pn) +

pn+1 + pn−1 − 2pn
c

]
.

Let us remark that equation (2.4) has the typical form of a MFG master equation
[4, 2]. However, contrary to the usual MFG master equations, the variable K
does not describe here the repartition of players in the state space but rather the
repartition of objects in the state space (here the level of storage in each site). An
interpretation of this fact is that, in this model, the repartition of objects is more
important than the repartition of players, such was already in the case in [5, 1] for
instance.

This fact is not casual but rather general : MFG master equation can appear in
equilibrium models with a state variable which is not the repartition of players in
the state space.

Finally, since there is no friction in our market equilibrium model, not surpris-
ingly, invisible hand principle applies and the MFG master equation (2.4) can be
derived from a HJB equation which is the HJB equation of a benevolent planner
of the invisible hand. We detail this fact in the next section.

2.3. The limit equations. Here we derive, formally, the limit of the previous
equation as N → ∞. Since p depends on the level of storage in every sites
K ∈ Rd, we expect that taking N → ∞, p depends on a function k : [0, 1] → R.
Moreover, since p also depends on the site, it is also a function of a real vari-
able x. We assume that p is at least defined on k ∈ L2([0, 1]). Hence, assuming
some integrability of p(k) for any k ∈ L2, the price function p can be described as
p : L2([0, 1])→ L2([0, 1]).

To simplify the following, we assume that the costs of storage do not depend
on n and that they are given by an affine function g, thus it no longer appears in
the term Di. We assume also that Fn(p) = p for all n. The proper scaling for the
passage to the limit N → ∞ is c = N−2. If we assume that the sites are located
uniformly on a unit circle, this corresponds to a quadratic cost of transportation.
In this regime, the limit of (2.4) becomes

(2.5) 0 = −rp(k) +
σ2

2
∆kp(k) + 〈p(k)−∆xp(k),∇〉p(k) + g(k), in L2([0, 1]).

In the previous equation, the operator ∆k is the Laplacian operator in the space
of function taking values in L2([0, 1]), i.e., it is the trace of the Hessian; 〈·, ·〉 is
the scalar product in L2([0, 1]), ∆x is the usual Laplacian operator from H2([0, 1])
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into L2([0, 1]) and ∇ is the usual gradient operator on the Hilbert space L2([0, 1]).

Using these notations, assume that φ : L2([0, 1]) → R is a smooth solution of
the equation

(2.6) rφ− σ2

2
∆kφ−

1

2
〈(Id−∆x)∇φ,∇φ〉 = G(k) in L2([0, 1]),

where G : L2([0, 1]) → R is such that ∇G(k) = g(k). Then, ∇φ is a solution of
(2.5). Hence, solving (2.5) can be done by means of the HJB equation (2.6).

Obviously, the study of (2.6) is easier than the one of (2.5). The interest of the
latter, is that it offers a wider range of applications. Indeed, some models can be
expressed by equation of the form of (2.5) without the possibility of integrating
the equation into an HJB equation such as (2.6). This is for instance the case for
general storage costs g. However, for the sake of simplicity, we limit ourselves to
the study of a time dependent counterpart of (2.6) in this paper.

To conclude this modeling part, we make the analogy with the MFG terminology.
The equation (2.5) is the master equation associated to this problem, its solution
helps to describe the underlying equilibria. In the potential case, the equation
(2.6) is the HJB equation of the social planner. We focus on this point of view
here.

3. Notation and mathematical formulation of the problem

Let (H, 〈·, ·〉) be a separable real Hilbert space and A ∈ L(H) a symmetric,
positive and invertible operator such that A−1 is compact. We denote by (λn)n≥0
the increasing sequence of eigenvalues of A (possibly with repetition according to
the multiplicity) and by (en)n≥0 an orthonormal basis of H formed of corresponding
eigenvectors. For the rest of the paper, we shall adopt the convention

(3.1) ∀x ∈ H, x =
∞∑
i=0

xiei, where (xn)n≥0 ∈ RN.

We consider the following PDE whose solution is denoted by φ : (0,∞)×H → R

(3.2) ∂tφ−∆φ+
1

2
〈A∇φ,∇φ〉 = 0, in (0,∞)×H,

(3.3) φ|t=0 = φ0 in H.

In the previous equations, φ0 is considered as a data from the model and assump-
tions on it shall be made later on, ∇ is the gradient operator and ∆ is the Laplcian,
i.e. it is the trace of the Hessian operator, when it is defined. The aim of this
paper is to provide a suitable notion of solution for the singular PDE (3.2)-(3.3).
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Remark 3.1. The case of equation (3.2) with a right hand side term could have
also been treated. Although, because it is merely an extension of the study we
present here, we leave this trivial extension to the interested reader.

3.1. Preliminary results.

3.2. The quadratic case. Let us consider first the instructive case in which φ0

is given by

(3.4) φ0(x) =
1

2

∞∑
i=1

µ0
ix

2
i ,

for some bounded real sequence (µ0
n)n≥0 ∈ `∞. We then seek a solution of (3.2)-

(3.3) of the form

(3.5) φ(t, x) = c(t) +
1

2

∞∑
i=1

µi(t)x
2
i , for t ≥ 0, x ∈ H.

When plugging this function in (3.2)-(3.3), one obtain that φ is indeed a solution
if and only if for all i ≥ 0

(3.6)

{
1
2
µ̇i(t) + 1

2
λiµi(t)

2 = 0,

µi(0) = µ0
i ,

and

(3.7) ċ(t) =
∞∑
i=1

µi(t).

From this we deduce that if for some i ≥ 0, µ0
i < 0, then there is no solution to

(3.2)-(3.3) as there is explosion in finite time. On the other hand, if µ0
i ≥ 0 for all

i ≥ 0, then the systems (3.6) lead to

(3.8) ∀i ≥ 0, t ≥ 0, µi(t) =
µ0
i

1 + λiµ0
i t
.

This naturally yields a formula for c which is

(3.9) ∀t ≥ 0, c(t) =
∞∑
i=0

λ−1i log(1 + λiµ
0
i t).

The previous is well defined only if
∑

i λ
−1
i log(1 + λi) < +∞. The previous

computations can be summarized in

Proposition 3.1. Assume that
∑

i λ
−1
i log(1 + λi) < +∞. For any positive

bounded sequence µ0, the function φ defined by (3.5)-(3.9) is a classical solution of
(3.2), which satisfies the appropriate initial condition.
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The question of uniqueness of such a solution is treated later on. Let us insist
upon the fact that, in this simple setting, the sequence (λi)i≥0 has to satisfy

(3.10)
∑
i

λ−1i log(1 + λi) < +∞,

and φ0 has to be assumed to be convex.

3.3. The deterministic case. Let us consider the deterministic problem

(3.11)
∂tψ +

1

2
〈A∇ψ,∇ψ〉 = 0, in (0,∞)×H,

ψ|t=0 = φ0 in H.

Formally the solution of this equation is given by the Lax-Oleinik formula

(3.12) ψ(t, x) = inf
y∈H

{
φ0(y) +

〈A−1(x− y), x− y〉
2t

}
.

Of course it is not clear that this formula makes sense without assumptions on A
and φ0. Nonetheless, we believe that the deterministic case is insightful for the
study of (3.2). For instance, it helps us to understand the behavior of the solution
of (3.2) near t = 0. Indeed the function ψ defined by (3.12) is not continuous in
t at t = 0 without additional assumptions on the initial condition. The following
result gives a necessary condition for which this is the case.

Proposition 3.2. Assume that φ0 is convex, continuous and that φ0(x) → ∞
when |x| → ∞. Then for any x ∈ H, ψ(t, x)→ φ0(x) as t→ 0 where ψ is defined
by (3.12).

Proof. Let us observe first that ψ(t, x) ≤ φ0(x) for all t, x (simply choose y = x
in (3.12)). Fix x ∈ H and consider a sequence (tn)n≥0 of non negative elements
which converges toward 0. Consider for all n ≥ 0 an element yn ∈ H such that

(3.13) φ0(yn) +
〈A−1(x− yn), x− yn〉

2tn
≤ ψ(tn, x) +

1

n+ 1
≤ φ0(x) +

1

n+ 1
.

From the growth assumption on φ0, we deduce that, up to a subsequence, (yn)n≥0
has a weak limit y∗ ∈ H. From (3.13), since φ0 is clearly bounded from below, we
deduce that y∗ = x. Since φ0 is lower semi-continuous for the weak topology, we
deduce finally the desired result. �

Another situation in which the deterministic case is helpful is the one in which
we have estimates on the Laplacian of a solution φ of (3.2). In this case, we can
use the solution given by (3.12) (if it is well defined) to obtain some continuity
estimates near t = 0 on φ as the next result explains.

Proposition 3.3. Let us consider a smooth solution φ of (3.2) such that φ|t=0 is
continuous, convex and goes to ∞ as |x| → ∞ and that ∆φ is uniformly bounded,
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i.e. ‖∆φ‖∞ ≤ c. Moreover consider the function ψ defined by (3.12) with φ0 =
φ|t=0. Assume moreover that

(3.14) |φ(t, x)− ψ(t, x)| =
|x|→∞

o(ψ(t, x)).

Then the following holds for t ≥ 0, x ∈ H

(3.15) ψ(t, x)− ct ≤ φ(t, x) ≤ ψ(t, x) + ct.

Let us comment on (3.14). This assumption controls the distance between ψ
and φ. For instance, if the difference of these two functions is bounded, then (3.14)
holds. Indeed recall that ψ is a coercive function of x for any t. Moreover, let
us insist on the fact that the bounds obtained in the previous Proposition do not
depend quantitatively on this assumption, but only on the fact that it holds. This
shall be helpful later on in the paper.

Remark 3.2. Let us remark that if ψ is convex, then one can replace the conclusion
of the Proposition by, for all t ≥ 0, x ∈ H :

(3.16) ψ(t, x) ≤ φ(t, x) ≤ ψ(t, x) + ct.

Remark 3.3. If instead of the uniform bound on the Laplacian, one has indeed
‖∆φ(t, ·)‖∞ ≤ c(t) for some integrable function c(·). Then one can replace the
conclusion of the Proposition with

(3.17) ψ(t, x)− ω(t) ≤ φ(t, x) ≤ ψ(t, x) + ω(t),

where ω(t) =
∫ t
0
c(s)ds.

Proof. We only prove the second inequality, the first one can be obtained in a sim-
ilar fashion. The following is by now somehow standard in the study of Hamilton-
Jacobi equations in infinite dimension.
Without loss of generality we can assume that φ|t=0 ≥ 0. Indeed, the equation is
invariant by the addition of a constant and φ|t=0 is bounded from below. We want
to prove that for any λ ∈ (0, 1), t ≥ 0, x ∈ H,

(3.18) λφ(t, x) ≤ ψ(t, x) + ct.

Let us assume that (3.18) does not hold. Hence there exists (t∗, x∗) ∈ (0,∞)×H
such that λφ(t∗, x∗) < ψ(t∗, x∗) + ct∗. Thus there exists δ > 0, such that w :
(t, x) → ψ(t, x) + ct − λφ(t, x) + δt satisfies w|t=0 ≥ 0 and w(t∗, x∗) < 0. From
this, we deduce that t0 defined by

(3.19) t0 = inf{t > 0,∃x ∈ H,w(t, x) < 0}

is smaller than t∗. From the coercivity of ψ(t0) and (3.14), we deduce that w(t0)
is also coercive. Hence, there exists R > 0 such that

(3.20) inf
|x|≤R

w(t0, x) = 0.
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From Stegall’s Lemma [17, 18], which is always true in Hilbert spaces, we deduce
that for any ε > 0, there exists ξ ∈ H, |Aξ| ≤ ε and x0 ∈ H such that x0 is a strict
minimum of x→ w(t0, x) + 〈ξ, x〉 on {x ∈ H, |x| ≤ R}. By construction of t0 and
x0, the following relations hold

(3.21)

{
∂tw(t0, x0) ≤ 0,

∇ψ(t0, x0) + ξ = λ∇φ(t0, x0).

In the previous, the second line comes from the computation of the gradient of w.
Recall that

(3.22) ∂tψ(t0, x0) +
1

2
〈A∇ψ(t0, x0),∇ψ(t0, x0)〉 = 0.

Using (3.21), we deduce that

(3.23) λ∂tφ(t0, x0)− δ − c+
1

2
〈A(λ∇φ(t0, x0)− ξ), λ∇φ(t0, x0)− ξ〉 ≥ 0.

From the assumption we made on φ, we can use the PDE it is a solution of to
obtain
(3.24)

λ∆φ(t0, x0)−δ−c+(λ2−λ)
1

2
〈A∇φ(t0, x0),∇φ(t0, x0)〉+λ〈A∇φ(t0, x0), ξ〉+

1

2
〈Aξ, ξ〉 ≥ 0.

Recall now that A is a positive operator, hence 〈A∇φ(t0, x0),∇φ(t0, x0)〉 ≥ 0.
Thus we obtain that, taking ε small enough (ε was used to measure the size of
ξ), we obtain a contradiction in the previous inequality. Hence for any λ ∈ (0, 1),
(3.18) holds. The required result is then proved by passing to the limit λ → 1 in
(3.18).

�

3.4. Counterexamples to the time continuity of the solution of the de-
terministic problem. We present two examples in which φ0 does not satisfy the
assumptions of the previous result to justify in some sense that some assumptions
have to be made.

The first one is an example in which φ0 does not satisfy the required growth
assumptions at infinity.

Example 3.1. Assume that the eigenvalues of A are given by λn = (n+1)α, n ≥ 0
and consider x∗ ∈ H given by x∗n = (n+1)−β, n ≥ 0. Let us choose φ0(x) = 〈x, x∗〉2.
We take α and β such that α > 2β > 1. The following holds for any x ∈ H

(3.25) inf
y∈H

{
φ0(y) +

1

2t
〈A−1(x− y), x− y〉

}
−→
t→0

0.
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Indeed fix x ∈ H and consider z ∈ H defined by

(3.26)


zk = xk, k ≤ N − 1

zN = −(x∗N)−1
∑N−1

i=0 x∗i zi,

zk = 0, k ≥ N + 1

where N is to be fixed later on. We compute

(3.27)

φ0(z) +
1

2t
〈A−1(x− z), x− z〉 =

1

2t

(
λ−1N (zN − xN)2 +

∑
i≥N+1

λ−1i x2i

)
,

≤ 1

2t

(
λ−1N (zN − xN)2 +

∑
i≥N+1

λ−1i x2i

)
,

≤ C

2t

(
(N + 1)−α(N + 1)2β + (N + 1)1−α

)
.

where C is a constant depending on α, β and x. Then, since α > 2β > 1, choosing
N such that (N +1)2β−αt−1 is as small as we want, we conclude that (3.25) indeed
holds and thus that the initial condition is not satisfied in such a case.

The second example is a case in which φ0 is not convex. This non-convexity
highlights the non weak lower semi continuity of φ0 which is crucial and which we
also comment in the following example.

Example 3.2. Consider φ0 defined by

(3.28) φ0(x) =

{
|x|2 if |x| ≥ 1,

2− |x|2 else.

For any t > 0, one has ψ(t, 0) = 1. Indeed, one necessary has ψ(t, x) ≥ infx∈H φ0(x) =
1. Then considering the sequence yn = en as a minimizing sequence in (3.12), it
follows that ψ(t, 0) ≤ 1, hence the fact that ψ(t, 0) = 1. This is an obvious contra-
diction to the fact that ψ converges toward φ0 as t→ 0.

More generally, it is the weak lower semi continuity of φ0 which is important to
obtain the time continuity in t = 0 of the deterministic solution. More precisely,
let us assume that there is a sequence (xn)n≥0 weakly converging toward x ∈ H
such that both lim inf φ0(xn) < φ0(x) and (A−1xn)n≥0 converge (strongly) toward
A−1x. Then for any t ≥ 0, ψ(t, x) = lim inf φ0(xn) < φ0(x).

3.5. A priori estimates. In this section we present some key a priori estimates
to establish existence and uniqueness of solutions of (3.2). Since we are not going
to use those estimates directly, we prove them for a very specific class of functions.
Nevertheless, those estimates are insightful on why the equation (3.2) is well posed.

For a smooth function φ : H → R and i, j ≥ 0, we shall denote by φi the
derivative of φ in the direction of ei and by φij the derivative of φi in the direction
of ej.
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We define the space B of functions [0,∞)×H → R such that

• φ ∈ C4.
• For all i, j ≥ 0,∆φi,∆φij are well defined.
• For all i ≥ 0, t ≥ 0,

∑
k≥N ∂kkφii(t, x)→ 0 as N →∞, uniformly in x ∈ H.

• ∇φ,∇φi,∇φij ∈ Dom(A).
• ∀t ≥ 0, ‖φii(t, ·)‖∞ <∞.

We acknowledge that this space B can seem a bit arbitrary at first. It is a suitable
set in which the following a priori estimates are not too difficult to prove and in
which any smooth function on the finite dimensional space HN can be lifted. We
shall come back more clearly on this second point later on in the paper.

As we already mentioned, the regularity of solutions of (3.2) can be established
with a key a priori estimate on the second order derivatives of the solution that
we now present.

Proposition 3.4. If φ ∈ B is a solution of (3.2), then for all t > 0, i ≥ 0, x ∈ H,

(3.29) φii(t, x) ≤ φ0
ii

1 + λiφ0
iit
,

where φ0
ii := ‖φii|t=0‖∞. If φ|t=0 is convex, then φ(t) is convex for all time. If φ|t=0

is bounded from below by a constant, then φ is bounded from below by the same
constant.

Remark 3.4. If φ0
ii = +∞, we understand the right hand side of (3.29) as simply

(λit)
−1.

Proof. First let us remark that constants are solution of (3.2), thus if φ|t=0 is
bounded from below by a constant, then φ is bounded from below by the same
constant, using a comparison principle type result. This can be proved in exactly
the same fashion as Proposition 3.3 and thus we do reproduce the argument here
for the sake of clarity.

For all i, j ≥ 0, φij is a solution of

(3.30) ∂tφij −∆φij + 〈A∇φ,∇φij〉+
∑
k

λkφkiφkj = 0 in (0,∞)×H.

Choosing i = j in the previous equation yields

(3.31) ∂tφii −∆φii + 〈A∇φ,∇φii〉+ λiφ
2
ii ≤ 0 in (0,∞)×H.

Assume now that (3.29) does not hold and thus that there exists, t∗, x∗ such that

(3.32) φii(t∗, x∗) >
φ0
ii

1 + λiφ0
iit∗

.
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Let us define u(t, x) = φii(t, x) − φ0ii
1+λiφ0iit

− δt − ε|x|2. By construction of (t∗, x∗),

there exists δ, ε > 0 such that u(t∗, x∗) > 0. We consider such a pair (δ, ε). Let us
now define, for some N ≥ 1, t0 with

(3.33) t0 = inf{t > 0,∃x ∈ HN , u(t, (x, 0)) > 0}.1

It is clear that t0 depends on N , however let us recall that it is bounded in N since
u is continuous in H. Since φii is bounded (indeed φ ∈ B), we know that there
exists R > 0 such that

(3.34) sup{u(t0, (x, 0)), x ∈ HN , |x| ≤ R} = 0.

Let us insist on the fact that R > 0 can be chosen independently of N here.
Hence, using once again Stegall’s Lemma [17, 18], we know that for any ε′ > 0
(independent of N), there exists ξ ∈ HN , |Aξ| ≤ ε′ such that x → u(t, x) + 〈ξ, x〉
has a strict maximum at some point x0 ∈ HN . Hence at we deduce the following

(3.35)


u(t0, x0) = O(ε′),

∂tφii(t0, (x0, 0)) ≥ δ − λi
(

φ0ii
1+λiφ0iit0

)2
,

∇Nφii(t0, (x0, 0)) = 2εx0 − ξ,∑N
k=1 ∂kkφii ≤ 2εN.

Evaluating (3.31) at (t0, (x0, 0)), we obtain
(3.36)

δ−λi
(

φ0
ii

1 + λiφ0
ii

)2

−2εN−
∑

k≥N+1

∂kkφii+〈A∇Nφ, 2εx0−ξ〉+λiφ2
ii(t0, (x0, 0)) ≤ 0.

Using the first line of (3.31), we deduce

(3.37) δ − 2εN −
∑

k≥N+1

∂kkφii +O(ε|x0|) +O(ε′) ≤ 0.

Let us now remark that, as usual with such viscosity solutions like estimates,
ε|x0| → 0 as ε → 0. Moreover, using the uniform summability of ∆φii, we take
N large enough, then we take ε → 0 and then we take ε′ → 0 to arrive at a
contradiction in the previous equation. Thus the claim follows.

�

We then deduce the following.

Corollary 3.1. If φ ∈ B is a smooth solution of (3.2) with convex initial data,
then for any t > 0, i, j ≥ 0

(3.38) |φij(t)| ≤

√
φ0
ii

1 + λiφ0
iit

√
φ0
jj

1 + λjφ0
jjt

1Let us recall that (x, 0) denotes the element of H whose N first components are equal to x
and the rest are set to 0.

12



This corollary simply follows from the non-negativity of the Hessian matrix of
φ as well as form the bounds on φii.

We now establish the extension of a classical estimate on the gradient of a convex
function by its second order derivatives in finite dimension.

Proposition 3.5. Assume φ ∈ B is a smooth solution of (3.2) with convex initial
data. Assume also that φ0 is bounded from below by some constant. Then there
exists a positive function M : (0,∞) ×H → R depending only on φ0 and A such
that

(3.39) |∇φ(t, x)| ≤M(t, x)
√
φ(x)− inf

H
φ0.

This type of inequalities is more or less standard . We include a proof for the
sake of completeness.

Proof. Let us consider x ∈ H and consider the function ψ : R→ R defined by

(3.40) ψ(θ) = φ(x+ θ∇φ(x)).

Let us observe that ψ is a smooth function and that

(3.41) ψ′(θ) = 〈∇φ(x+ θ∇φ(x)),∇φ(x)〉,

(3.42) ψ′′(θ) = 〈∇φ(x)D2φ(x+ θ∇φ(x)),∇φ(x)〉.
For any θ, the following holds

(3.43) ψ(θ) = ψ(0) + ψ′(0)θ +
θ(θ − z)

2
ψ′′(z),

for some z ∈ [0, θ]. Hence

(3.44) 0 ≤ (ψ(0)− inf
H
ψ) + ψ′(0)θ +

θ2

2
‖ψ′′‖∞.

This second order expression in θ does not change sign, thus

(3.45) (ψ′(0))2 ≤ 2‖ψ′′‖∞(ψ(0)− inf
H
ψ).

The required result then easily follows from this inequality.
�

3.6. A formal change of variable. We present a change of variable which sim-
plifies the PDE (3.2). Formally if φ is a solution of (3.2) then defining v by

(3.46) v(t, Bx) = φ(t, x),

where B = A−1/2. We observe that formally v satisfies

(3.47) ∂tv +
1

2
|∇v|2 − Tr(B2D2v) = 0, in (0, T )×H

13



4. Existence and uniqueness of solutions

4.1. Existence. For anyN ≥ 0, let us consider the Hilbert spaceHN = Span({e1, ..., eN}).
By construction HN is stable under A. The N dimensional problem associated to
(3.2) is

(4.1) ∂tφ−∆Nφ+
1

2
〈A∇φ,∇φ〉 = 0 in (0,∞)×HN ,

where we used the notation ∆N to insist on the fact that we are here in HN . The
unknown is φ : (0,∞)×HN → R. The idea we are going to follow in this section,
is that, with an appropriate choice of initial conditions, the sequence of solutions
of (4.1) converges toward a solution of (3.2), in a sense to be made precise later on.

We start with recalling the following classical result for problem (4.1).

Theorem 1. Assume φN0 ∈ C(HN) is bounded from below, then there exists a
unique viscosity solution φN of (4.1) with initial condition φN0 . Moreover φN is
locally Lipschitz continuous and C1,1 in space.

We now use in some sense the a priori estimates we presented earlier, or rather
their proof as we are going to use them at the level of HN . Before doing so, let
us indicate the choice of the initial condition we use for (4.1). Several choices are
suitable, we could for instance set φN0 (x) = φ0(x

′) for x ∈ HN where x′ ∈ H is
such that xi = x′i for i ≤ N and x′i = 0 else. However, in all that follows, we set
for x ∈ HN

(4.2) φN0 (x) = inf{φ0((x, y))|y ∈ H⊥N},
where (x, y) is the vector whose first N + 1 coordinates are given by x and the
other coordinates by y. We define the solution of the deterministic problem in the
finite dimension case ψN which is given for x ∈ HN by

(4.3) ψN(t, x) = inf
x′∈HN

{
φN0 (x′) +

〈A−1(x− x′), x− x′〉
2t

}
.

Let us remark that the following holds.

Proposition 4.1. If φ0 is continuous, convex and satisfies φ0(x) → ∞ when
|x| → ∞, then φN0 and ψN converges toward respectively φ0 and ψ

For a fixed N ≥ 1, we can establish the

Theorem 2. For all N ≥ 0, let φN be the solution of (4.1) with initial condition
φN0 given by (4.2). Assume that φ0 ∈ C1,1 is convex and satisfies φ0(x) → ∞ as
|x| → ∞. Then for all N ≥ 0, φN satisfies

• for all 0 ≤ i, j ≤ N, x ∈ HN , t ≥ 0, |(φN)ij(t, x)| ≤ 1√
λiλjt

.

• |∇φN(t, x)| ≤M(t, x)
√
φN(x)− infH φN0 .

• ψN ≤ φN ≤ ψN + w(t).
14



• If we define v(t, Bx) = φN(t, x) then v is a solution of

(4.4) ∂tv +
1

2
|∇v|2 −

N∑
i=0

λivii = 0, in (0, T )×HN

Proof. We start by proving that φN0 is continuous, convex and satisfies φN0 (x)→∞
when |x| → ∞. The only point which is not immediate is the convexity and we
detail it here. Let us take θ ∈ (0, 1), x, x′ ∈ HN . Since φ0 is continuous and convex,
it is lower semi continuous for the weak topology of H. Since it satisfies a growth
condition, we deduce that there exists y, y′ ∈ H such that φN0 (x) = φ0((x, y)) and
φN0 (x′) = φ0((x

′, y′)). We now compute

(4.5)

θφN0 (x) + (1− θ)φN0 (x′) = θφ0((x, y)) + (1− θ)φN0 ((x′, y′))

≥ φ0((θx+ (1− θ)x′, θy + (1− θ)y′))
≥ φN0 (θx+ (1− θ)x′).

From these properties of φN0 , we can establish that all the computations of the
previous section are still valid and that φN satisfies the estimates of the Theorem,
except for two points : φN is not necessary in B, mainly because it is not C4 in
space, and we have to ensure that the hypotheses of Proposition 3.3 hold.

The first point can be treated easily by approximation of the initial condition
with C4 functions that we do not present here as they are standard. Moreover,
extending the function φN to H by setting φ̂N(t, (x, x′)) = φN(t, x) allows to apply
Propositions 3.3 and 3.4.

Concerning the second poitn, let us recall that since φN0 ∈ C1,1, ‖∆φN(t)‖∞ ∈
L1
loc((0,∞),R) uniformly in N . Moreover, classical comparison principles hold and

we can bound ‖ψN − φN‖∞ using the bound on ‖∆φN(t)‖∞ ∈ L1
loc((0,∞),R).

Hence we can apply Proposition 3.3 and we know that ψN ≤ φN ≤ ψN + w(t)
for some modulus of continuity w which is independent of N , thanks to Remark
3.3. �

The main result of this section follows.

Theorem 3. Assume that φ0 is convex C1,1 function which satisfies φ0(x) → ∞
when |x| → ∞. Then there exists a solution φ : [0,∞) × H → R of (3.2) in the
following sense

• φ is continuous as an element of C([0,∞), C(H)) and satisfies φ(0) = φ0.
• The function v defined by (3.46) is a viscosity solution of (3.47)
• φ satisfies the a priori estimates of the previous section.

Proof. Thanks to Theorem 2, we consider for any N the solution φN of (4.1)

with initial condition (4.2). Define for any N ≥ 1, φ̂N(t, (x, x′)) = φN(t, x) for

(x, x′) ∈ H and x ∈ HN . For any t > 0, (φ̂N(t, ·))N≥0 is a sequence of bounded
and uniformly in N Lipschitz functions. Indeed, this sequence satisfies uniformly
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the a priori estimates established in Section 3.5 as this was shown in Theorem
2. Hence, extracting a subsequence if necessary, it has a limit φ toward which
it uniformly converges on all compact sets of H. The fact that φ satisfies the
requirements of the Theorem is standard and we do not detail it here.

�

The previous result can be extended to more general initial conditions.

Corollary 4.1. Assume that φ0 can be approximated uniformly by C1,1 functions
and that it is convex and satisfies φ0(x)→∞ when |x| → ∞. Then the conclusions
of Theorem 3 hold.

Proof. Let us consider a uniform approximation φ̃0,ε of φ0 (at distance at most ε).

Denote by φ̃ε,N and φN the solution of (4.1) with respective initial conditions φ̃N0,ε
and φN0 . Let us note that φN satisfies all the conclusions of Theorem 2 except for
the comparison with the solution of the deterministic problem.

Arguing as in the proof of Theorem 3, (φ̃ε,N)N≥1 converges toward a a function

φ̃ε which satisfies the requirements of Theorem 3. The only argument missing to
apply directly the same argument to the sequence (φN)N≥1 is the bound. However,
for N ≥ 1, we can use a comparison principle in HN to obtain that

(4.6) ψN(t, x) ≤ φN(t, x) ≤ φ̃ε,N(t, x) + ε.

Hence the previous argument implies that (φN)N≥1 has a limit φ which satisfies
all the requirements of Theorem 3, except for the time continuity at the origin.
To observe that this continuity indeed holds, it suffices to remark that we can
compare the function φ̃ε to the solution of the associated deterministic problem
ψε. Hence the following holds

(4.7) ψ(t, x) ≤ φ(t, x) ≤ ψε(t, x) + wε(t) + ε.

From this we obtain that φ(t) → φ0 as t → 0, since it holds for any ε > 0 and
since ψε converges toward ψ as ε→ 0. �

4.2. Uniqueness. The following uniqueness result can be established.

Theorem 4. Under the assumptions of Corollary 4.1, there exists a unique solu-
tion φ of (3.2) in the sense that it satisfies all the conclusions of Theorem 3.

Proof. Consider φ the solution provided by Theorem 3 (or its Corollary) and by

φ̃ another solution. Denoting by φ̃N(t, x) := φ̃(t, (x, 0)) for t ≥ 0, x ∈ HN , we
immediately remark, thanks to the convexity of the solution, that for all N ≥ 1,
φ̃N is a super solution of (4.1), hence

(4.8) φN ≤ φ̃N
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from classical comparison principles in finite dimension. Hence we obtain that
φ ≤ φ̃.

The opposite inequality is slightly more involved. Assume that there exists
t∗ > 0, x ∈ H such that φ(t∗, x) + δ < φ̃(t∗, x) for some δ > 0. For N ≥ 1, let us
introduce

(4.9) φ̂N(t, x) = inf{φ̃(t, (x, x′))|x′ ∈ H⊥N}

and

(4.10) v̂N(t, Bx) = φ̂N(t, x) ; ṽ(t, Bx) = φ̃(t, x)

By construction, v̂N satisfies

(4.11) ∂tv̂
N +

1

2
|∇v̂N |2 −

N∑
i=1

λ−iv̂Nii =
∑
i≥N+1

λ−iṽii in (0,∞)×HN .

Because, φ̃ satisfies the a priori estimates, we know that |ṽii| ≤ t−1. Hence, for
any κ > 0, there exists N ≥ 1, such that, uniformly,

(4.12)

∣∣∣∣∣ ∑
i≥N+1

λ−iṽii

∣∣∣∣∣ ≤ κ

t
.

Let us now define

(4.13) tN := inf

{
t > 0,∃x ∈ HN , φ

N(t, x) +
δ

2
< φ̂N(t, x)

}
.

Since we assumed that t∗ exists, for N sufficiently large, tN is well defined. We
want to show that tN → 0 as N → ∞. If this is not the case, then, extracting
a subsequence if necessary, for all N ≥ 1, tN ≥ α for some α > 0. By taking N
larger than the one corresponding to κ = δα/(2(t∗ − α)) in (4.12), we arrive at a
contradiction. Hence, tN → 0 as N →∞.

In order to conclude, it suffices to remark that this is in contradiction with the
continuity at t = 0 of both φ and φ̃. Hence t∗ does not exist, and thus φ ≥ φ̃
which concludes this proof.

�
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