MEAN FIELD GAMES WITH INCOMPLETE INFORMATION

CHARLES BERTUCCI !

ABSTRACT. This paper is concerned with mean field games in which the players
do not know the repartition of the other players. First a case in which the players
do not gain information is studied. Results of existence and uniqueness are
proved and discussed. Then, a case in which the players observe the payments
is investigated. A master equation is derived and partial results of uniqueness
are given for this more involved case.
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INTRODUCTION

This paper is interested in Mean Field Games (MFG in short) in which the
players do not have a complete information on the repartition of the other players
in the state space. Namely they are mostly unable to observe each other and have
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only an a priori on the initial distribution of players. This type of MFG leads to
new mathematical questions which are partially solved here.

MFG have attracted quite a lot of attention since the seminal work [12, 13].
They are differential games involving non-atomic agents. MFG arise in a wide
variety of modeling context such as Economics [11, 1], financial engineering [6],
epidemiology [10] or Telecommunications [4]. For a vast majority of the existing
literature, it is always assumed that all the players have a complete information
on the MFG, i.e. they can observe at any time the state and action of each player.
In this paper, cases in which all the information is not available to the players are
studied.

Several authors have studied problems in which the players do not know directly
their individual state but only have some partial information on it, see for instance
[14]. This setup is different from the one we study here. P.-L. Lions studied a MFG
in which all the players are learning an unknown parameter of the model. The
closest work to ours in terms of models is [8] in which the authors studied a MFG
in which the players do not know the controls of the other players, only the effect
they have (as a whole) on their objective function. This last work relies on the
fact that their model is explicitly solvable.

The rest of the paper is organized as follows. A presentation of the MFG model
and a quick discussion on the structure of information in MFG is first. The rest of
the paper is divided in two parts which make the core of the paper. The first one is
concerned with a case in which the players have an incomplete initial information
and do not gain any information with time. The second one is devoted to the
situation in which the players do not observe the state of the other players but
have complete information on their payments.

1. THE MFG MODEL AND THE CLASSICAL STRUCTURE OF INFORMATION

1.1. Presentation of the model. We present here the framework of the under-
lying game between the players. The state of each players is a process valued on
the d dimensional torus T¢ which evolves according to

(11) dXt = O{tdt + V 20'th7

where (W})i>0 is a d dimensional Brownian motion on a standard (fixed) filtered
probability space (£2,.4, P, (F;)i>0). The game lasts a time 7' > 0 and the cost of
a player who uses the control (ay)s>o is given by

T
(1.2) /0 F(Xama) + L(Xo, a0)ds + Uo( X ),

where (my);>0 is the evolution of the measure describing the spatial distribution
of players. Clearly the cost paid by the players is unknown to them at the initial

time since the evolution of their state is stochastic. We naturally assume that the
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players are risk neutral and take into account the expected cost they are too face
which is, if the evolution (1), is known,

(1.3) Ep [/OT f(Xs,ms) + L(Xs, ag)ds + Ug (X, my)

We do not particularly insist on why we make such an assumption, which is wildly

common in the literature on stochastic optimal control. Hence, given an anticipa-

tion (my)sejo,r], @ player can compute its optimal response by solving the Hamilton-

Jacobi-Bellman (HJB) equation

—Ouu(t,r) — oAu(t,z) + H(x, Vu(t,z)) = f(m)(z) in (0,T) x T%
u(T, z) = Uy(mr)(z) in T¢,

where we have introduced the Hamiltonian H (z,p) := sup,{—«a-p— L(x,«)}. The

associated optimal control is given in feedback form by

(15) ap = —DpH(Xt,VzU(t,Xt))

On the other hand, given that the players use a strategy of the form oy = b(t, X})

for some function b, their repartition in the state space evolves according to the

Fokker-Planck equation

(1.6) omy — acAmy + div(bmy) = 0in (0,T) x T%,

which is, as usual, understood in the sense of distribution. Hence, given an initial
repartition of players my € P(T4), a strategic equilibrium is reached if one can
find a solution (u,m,b) of (1.4)-(1.6) together with b(t,z) = —D,H (x, V,u(t,z)).
This is summarized in the system

— O — vAu+ H(z,Vu) = f(m)(x),
(1.7) om — vAm — div (D,H(x, Vu)m) = 0,

u(T, z) = G(m(T))(x), m(0) = mo,
where the dependence of the unknown (u,m) in (¢,x) is omitted to lighten the
notation.

(1.4)

1.2. The structure of information. In the previous system, if neither the par-
ticular form of the second order term or the fact that dependence in m and Vu
are decoupled are important, a fundamental observation lies in the initial distri-
bution of players mg. This observation is that the knowledge of mg is equivalent
(in terms of induced equilibria) to the knowledge of the whole evolution of the
repartition of players (m¢):cjo,r7. This quite simple fact do not need any particular
proof as it only suffices to remark that my is the only datum in the previous sys-
tem of equations. Of course, it is a consequence of the deterministic evolution of
(m4)eo,m, given the strategies of the players. In other words, even if the players
do not observe each other during the game, as long as they know my, the induced

equilibria are the same as if they observe the whole trajectory (my):cjo,r1. Because
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the structure (or set) of equilibria only depends on the initial distribution mg, the
following question seems natural : what happens to the structure of equilibria if
the players do not know mg ?

To answer this question, some assumptions have to be made on the knowledge
at each instant that the players have on the repartition of other players. However,
let us state that if the process (m;):>¢ is not known and the players have a prior
(1¢)e>0 on it, a risk neutrality assumption shall be made on the players. By prior
we mean that instead of anticipating an evolution (m;);>¢ for the repartition of
players, the players believe that at any time ¢ > 0, the repartition of players is
unknown and that this uncertainty is described by the measure p; € P(P(T%)). In
such a context, the new expected cost of the players is

T
(1.8) Ep {/ / f(Xs,m)dps + L(Xs, a)ds + / Uo( X7, m)dpur
o Jpm P(Td)

1.3. Assumptions and notation. We now present the standing assumptions for
the rest of the paper. Before that, let us recall some some properties of sets of
probability measures.

Assume that (F,d) is a compact metric space. Then, the set P(E), of Borel
probability measures on F, can be equipped with the distance d; defined by

(1.9) () = s /E o) (1 — v)(do),

where the supremum is taken over Lipschitz functions on (F,d) with a Lipschitz
constant of at most 1. The set (P(E),d;) is compact. In all this paper, P(FE) is
always seen as equipped with d;. In particular, P(P(T¢)) is a compact set.
For the rest of the paper, we assume the following
e The hamiltonian H is smooth(, convex) and globally Lipschitz continuous
in p, uniformly in z.
e The function f (respectively Up) is continuous from P(T¢) to C(T¢) (re-
spectively to C?(T4)).
Let us also recall that given a duality product (-, ) between two sets F and E,
a mapping F : £ — E is said to be

e monotone if for all z,y € £’

(1.10) (F(z) = F(y),z —y) = 0.
e strictly monotone if for all z,y € E’
(1.11) (F(z) = F(y),z —y) = 0= F(z) = F(y)

2. THE BLIND CASE

The following situation shall be called the blind case. In this situation the
players all start with an a priori po € P(P(T?)) on the initial repartition of players

and they do not gain any information during the game. By this we mean that
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they only observe their individual state for the whole duration of the game. If the
players have the anticipation (fi);>o for their prior, from (1.8), the optimization
problem they have to face is described by the HJB equation

-0 —oAu+ H(x,Vu) = / f(m)dji, in [0,T] x T%
(2.1) P9

u(T) = / Up(m)djir in T¢,
P(Td)

from which they can compute an optimal response given by oy = —D,H (X, V,u(t, Xy)).
Let us insist on the fact that, in this case, the players do not observe the cost they

are paying, only their state. Indeed, in this model, the players start with an evo-
lution of an a priori on the repartition of players, and they stick to this a priori
during the game.

2.1. Evolution of the belief of the players. It remains to describe the evolution
of the a priori of the players. Under an anticipation of b : [0, 7] x T? — R? for the
strategies of the players, if the initial repartition of players is my, recall that its
evolution can be computed through the Fokker-Planck equation

(2.2) oym — o Am + div(bm) = 0 in (0, 00) x P(T%),
with initial condition
(2.3) mli—o = m.

Hence the evolution of the belief of the players is the push forward of the initial
belief by this Fokker-Planck equation. To be more precise, denote the solution of
(2.2) at time ¢ with initial condition mg by K;(mg). This define a semi group of
operators (K¢)i>o. Given an initial belief y (and anticipations b), the belief u; at
time ¢ is given by

(2.4) pe = (K¢)#ho,

where fup denotes the image measure by the map f of the measure ;. To keep
a partial differential equation (PDE) point of view on this problem, the evolution
(ut)¢>0 characterized by (2.4) is formally the solution of the following continuity
equation

sy T <<0Am V.. (mb))u) — 0in (0.7) x P(TY),

/~L|t:0 = Ho-

The operator V,, is thought as a divergence operator on P(T?). This is only
formal of course. This continuity equation on P(T%) states that the weight that
i puts on any element of P(T%) is transported along the paths generated by the

Fokker-Planck equation (2.2).
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Moreover, the equation (2.5) can be understood in the weak sense as the follow-
ing result explains.

Proposition 2.1. Fiz py and let (p1:)i>0 be defined by (2.4) (for a given smooth
function b). For any smooth function ¢ : [0,T] x P(T%) — R such that ¢(T) = 0,
the following holds

y /OT /P(Td) (—8t¢ — /Td(aAm(:v) — div(m(ﬂi)b(t,fb)))%(zﬁ,m,x)dx) dyigdt
2.6

- [ 6O =0
P(T4)

Moreover, it is the unique process to satisfy the previous variational relation.

Proof. 1t suffices to compute for any ¢ > 0

/ mwm—/ S(0)A(K) 110
P(Te) P(Td)
=/ o(t, Kum)pio(dm)
’P(Td)

and to remark that for any t > 0,m € P(T¢)

(2.7)

(2.8) %(b(t, Kim) = 0(t, Kym) + /Td (cAm — div(bm)) (?—:;(t, Kym, x)dz.

Because ¢ is smooth, in particular its derivative with respect to m is smooth in =z,
the previous integral is well defined. Integrating (2.8) between 0 and 7" and using
(2.7) gives the first part of the result.

The second part is obtained by taking two such processes and by considering
their difference v which satisfies for any ¢ as in the statement

(2.9)
0= /OT /73(Td) (—&(b — Td(aAm(:c) — V.- (m(m)b(t,x)))g—i(t,m, x)dx) dvydt.

Take any smooth function G : [0,7] x P(T?) — R and define
(2.10) o(t,m) == /T G(s, Ks_ym)ds.
Now observe that by construction of qtﬁ, plugging it in (2.9) yields
(2.11) /T/ G(t,m)v(dm)dt = 0.

o JpTe

Hence v = 0 by density of smooth functions in C(P(T%)). O

Remark 2.1. The question of existence of such a process has already been answered

since it has been constructed above.
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Moreover, this evolution of the belief is continuous with respect to time, given
that b € L.

Proposition 2.2. Assume that the drift b of (2.2) is bounded. Then (fit)cio,m
defined in (2.4) is uniformly %—Hdlder continuous, with a constant depending only
on ||b|]o-

Proof. By definition, for s,t € [0, T

di(ps, pu) 1= sup / dd(ps — fie)

(2.12)
_ / (K m) — S(Km)dpo.
P(T)

Using both the classical %—Hélder continuity estimate on the Fokker-Planck equa-
tion and the Lipschitz continuity of ¢ we obtained the required result. 0

Example 1. To illustrate the previous evolution of the belief, consider the case in
which po is a combination of Dirac masses. If it is given by po == n"1Y i | Om,,
then for any t >0, p; is simply given by iy :=n""> 1" | O ym,-

2.2. Existence of Nash equilibria of the game. In the same way as (1.7)
characterizes Nash equilibria of the MFG when the initial of distribution of play-
ers is known, we can characterize Nash equilibria of the MFG with incomplete
information with a system of PDE. Indeed given an initial belief py and a profile
of strategy b : [0,7] x T¢ — R? for the players, one can compute the associated
anticipation on the belief with (2.5). Hence, a best response is derived through the
HJB equation (2.1) whose solution is u. One indeed gets a strategic equilibrium if
b(t,z) = —D,H(z, V,u(t, x)).

Thus Nash equilibria of the blind game with initial distribution pg are charac-
terized as solutions of

-0 — o Au+ H(z,Vu) = / f(m)dp, in [0,T] x T%
P(T9)

(2.13) Op+ Vo, - ((GAm + V.- (mD,H(-, qu)),u) = 01in (0,7) x P(TY),

u(T) :/ Uo(m)dpr in T, puli—0 = po.
P(Td)

To lighten the notation, we introduce f : u € M(P(T%)) — fP(Td) flz,m"u(dm') €
C(T%) and analogously Uy : pu — fP(Td) Uop(z, m")pu(dm’).
The following holds.

Theorem 2.1. There exists a solution (u,p) of (2.13) in the sense that u is a
classical solution of the Hamilton-Jacobi-Bellman equation and p is the unique

solution of the continuity equation in the sense of Proposition 2.1.
7



Proof. Let us consider the applications 11, ¥ and 13 defined by : ¥ : C([0, T], P(P(T4))) —
C12([0,T] x T?) associates to (u)i>o the solution of the HJB equation (2.1) ;
Py : CY2([0,T] x T4 — C([0,T], P(P(T?))) associates to a function u the solution
of (2.5) with initial condition o and drift b = —D,H(V,u) ; 3 := )3 0 ;.

To prove that 15 has a fixed point, using Schauder’s fixed point Theorem, it is
sufficient to establish that 15 is a compact and continuous mapping as 1 is clearly
continuous.

The fact that 1), is compact is a direct application of Proposition 2.2. The
fact that it is continuous is a consequence of the continuity of the Fokker-Planck
(2.2) equation with respect to the drift term b and on the definition of 3 using
(2.4). OJ

The previous result of existence of such equilibria is in no sense surprising and
falls in a category of somehow classical result of existence of Nash equilibria in
MFG. A more interesting feature is the effect the lack of knowledge has on unique-
ness properties of the equilibria.

2.3. Uniqueness of Nash equilibria. Let us first compute the usual proof of
uniqueness of MFG which dates back to the original paper of Lasry and Lions.
Take two solutions (uq, pt1) and (ug, pi9) of the system (2.13). Take the difference
of the left hand sides of the HJB equations, integrate against an arbitrary measure
m € P(T4) and then integrate once again against the difference p; — po, doing
this, we obtain using the equations satisfied by p; and ps

(2.14)

/ / () /T —0 — 0A)(u1 — ug) + H(z, Vuy) — H(z, Vug))m(dzr)(pa () — pa(t))(dm)dt
= /OT / oty Jra (Vo(uy — us) Dy H (2, V) + H(x, Vuy) — H(z, Vuy)) m(da)dpy (t)dt
/ / ) /Td o (g — u1) Dy H (2, Vug) + H(x, Vug) — H(x, Vuy)) m(dx)dus(t)dt
- /P - /T o (T) = (1) (@)m{de) (11 (T) = ra(T)) (dm).

Using the convexity of the Hamiltonian, and the HJB equations, we obtain
(2.15)

Lm>w%Wﬁ”—m@W@MMMMﬂ—m@mww

[ L) = @) i) on®) — pate) e <0
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This somehow classical computation yields a uniqueness result which is analogous
to the usual result of uniqueness for MFG Nash equilibria.

Theorem 2.2. Assume that f and Uy are such that
@16) [ [ oo = pa)mldo) s — pa)(dim) = 0,1, € PP(TY),
P(Td) JT

(2.17)
/7>(Td) Td (@, m—p2)m(dz) (s —po) (dm) < 0= f(m) = f(pa), Ypur, pa € P(P(TY)).

Then there is at most one solution (u, ) of (2.13).

However, as we shall see, these monotone-like assumptions are way stronger
than their classical counterparts.

Proposition 2.3. o Any function f which satisfy the requirements of the
previous Theorem is a monotone operator for the L? scalar product.
e For any smooth function ¢(t,x), if [ is defined by

(2.18) Ftam) = o) [ ot mym(dy).

then it satisfies the assumption of the previous result.

Proof. The first claim follows immediately from choosing p; and ps as Dirac
masses.

The second one follows from the computation
(2.19)

'p( d) Td ’P(Td) d
D(Td) d ,P(Tl) d /J/ ‘12 (i d :Z

= < 5 o(t, y)m'(dy) (- uz)(dm’)>2-
0

If it clear that the previous example of existence of functions satisfying the
requirements of Theorem 2.2 can be generalized (by adding terms independent of
m for instance), it is also clear that this requirement is more restrictive than the
monotonicity.

To highlight that, outside of these assumptions, the question of uniqueness is
as difficult as for the usual MFG system, we present an example in which several
equilibria are possible, in a two states model, in a non-dynamic setting, in a case
in which a unique equilibria .
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Example 2. Consider a non-atomic game with two states A and B and a contin-
uum of mass 1 of players. Initially the players do not know if they are distributed
uniformly between A and B or if they are all in state A, each of the two possibil-
ity being anticipated with probability % The players can change their state with a
probability of their choice. The cost they face is the mass of players in the state
in which they end up in (average with respect to the two possible scenarios). De-
noting by « (respectively ) the proportion of players who change from state A to
B (respectively from state B to A), a simple computation yields that there is a
continuum of equilibria of the form (o, 8) € {(3 +¢€,3¢),e € (0,3)}.

Remark 2.2. Such a counterexample can be adapted in a continuous framework
by setting o =0, f =0, H(p) = |p|, T large enough so that the players can reach
any point in the state space and by choosing the terminal cost Uy appropriately.

Remark 2.3. Another quite simple, but rather important, information we can
observe at the moment is that any monotone function f (in the L* sense) satisfies
the requirements of the uniqueness result on the subset of P(P(T%)) defined by
A= {u € P(P(TY),3g, 1 a.e. inm, f(m) = g}. To put it more simply, if the
indetermination on the initial distribution does not affect the payments, then the
uniqueness argument on monotonicity is still valid.

3. THE CASE OF OBSERVED PAYMENTS

The last remark of the previous section suggests to be interested in the case in
which, at any time, the absence of knowledge of the repartition of players does
not translate into an absence of knowledge of the payments of the players. Indeed
if at any time the players know the cost f, even if they do not know exactly the
repartition of players m, the cost f ”stays” monotone in some sense.

This section considers a case in which the players observe all the payments. By
this we mean that at a time ¢, even if the players do not know exactly the ac-
tual repartition of players m;, they know the cost f(m;) that it induces (on the
whole state space). In this situation, the information of the costs is common to all
the players. This structure is very reminiscent of a common noise in MFG. This
section is far from being a complete study of such models and its aim is more to
introduce this problem. Some partial results are given. The rest of this section is
organized as follows. After a formal description of the model and some reminders
on the disintegration of measures, the evolution of the belief with information on
the payments is presented. We then derive the associated master equation and
present a partial result of uniqueness.

It is worth mentioning that, in a situation in which the cost function is injective,
such a model is of no interest as the players learn instantly the repartition of

players. However we argue that in several models (especially macro-economic ones
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[11]), the cost function is far from being one to one and, for instance, depends only
on a few moments of the repartition of players.

3.1. The model. The framework is the following. Because the players are going
to update their belief on the repartition of players using the information they have
on the payments, this belief (ut);>0 can no longer be computed as a function of
the strategies of the players and the initial belief 1. Even if (p:)¢>0 is by no mean
random here, it is convenient to use the standard probabilistic framework to un-
derstand the object at interest here.

Even if the players do not know the initial distribution of players, there is an
actual my € P(T?) which describes their initial repartition. Because the players
have initially the belief pg, let us model mg as a P(T¢) valued random variable
whose law is . The evolution of the actual repartition of players is denoted
(my)i>0. Because it is unknown to the players, it can also be modeled as a random
variable whose law is (u¢):>0. The players then observe at any time ¢t > 0 the
payments f(m;) : T — R and update their belief accordingly by conditioning it
on their observation. The next section explains how the belief is updated.

Moreover, it seems clear that the information process (f(my)):>o plays the role
of a common noise and that a deterministic approach using a forward-backward
system such as (2.13) can no longer be sufficient to model equilibria of the MFG
and the master equation approach to characterize a value is presented later on.
Refer to [5] for more details on MFG master equations. A similar approach to the
one of [7] (used to deal with common noise) seems to be usable. However we were
not able to adapt these arguments to non smooth conditionings.

3.2. Reminders on disintegration. Since players are going to update their be-
lief according to the new information they gain, some facts on the disintegration,
or conditioning, of measures are recalled. If one were to compute an expectation
of some random variable, given an a priori information, the proper object to use
would be the conditional expectation. However, a more precise object is the con-
ditioning of the law of the random variable, given this information. The process
of obtaining this conditioning is called in the literature the disintegration of a
measure.

Given p € P(P(TY)), a function ¢ : P(T4) — E, for (E,v4u) a measured
set, the disintegration of p along ¢ is a family (p,),er of probability measures on
P(T9), where F = ¢(P(T%)), such that

e For any measurable set A C P(T%), u(A) = fp(Td) Py (A) pe(dm).

o Forany y € F, (v~ ({y})) = 1.

Formally, 1, is the conditioning of y on the fact that the information y has been

received. Disintegrations could have been defined in more general settings, see
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section 452 of [9]. Their existence and uniqueness is an involved question. In this

setting, the existence of a disintegration, and its uniqueness 1. almost every-
where hold [15].

3.3. Evolution of the belief. This section describes the evolution of the belief
of the players in the context of observed payments, given that the strategies of the
players are given by a function b : [0, 7] x T — R?. First, recall that because at
any time the players observe the payments, the process (f):>0, which represents
the common belief, has to be valued in

(3.1) A= {p € P(P(TY),3g, 1 a.e. inm, f(m) = g}.

Consider the total information the players have received up to the time ¢ > 0,
when the initial distribution of players is m € P(T?). Denoting this information
F(t,m), one finds

(3.2) F(t,m) == (f(Km))sepo

The belief of the players evolves as a combination of the two ”rules”

(1) The process (u)e>o is weighting elements of P(T¢) which are transported
along the same Fokker-Planc equation. Indeed, the strategies of the play-
ers, hence the drift b in (2.2), cannot depend on the different elements of
P(T4) which are "weighted” by p.

(2) At any time, the belief 41, is disintegrated along the function F into (i) ger(p(ray)
and the belief py which corresponds to the observed payments " becomes
the new belief.

Obviously the previous is quite formal and a more precise definition is presented
below.

Proposition 3.1. Given i € A, for i almost every m, there exists a process
(1} )e>0 which satisfies for any t >0

® g = L.
For any t > 0, there exists vy such that pj* = (Ky) a4
For any t > 0, for u}* almost every m’, f(m') = f(K;m).
For any measurable A C P(T%) such that for ji almost every m' € A,
fEm') = f(Kym), " (Ki(A) U X) = p"(X)
Moreover, for any t > 0, ¢ € C(P(T%), fP(Td) fP(Td) o(m)uy (dm’)a(dm) =
Fo oy 6 () ().

Remark 3.1. This Proposition is almost the definition of the evolution of the
belief in this model. The first point states the initial condition, the second one
that this evolution follows the first rule above, the third one states that the belief is
indeed consistent with the information and the fourth point states that the process
(uf(m))tzo is not too restrictive (not simply (dx,m)i>0 for instance), even though
no uniqueness result is stated here.
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Proof. For t > 0 consider the disintegration of u along ¢ := F(t,-) and denote it
by (79)gey(p(ra)). Defining vy 1= Ur () and

(3.3) ™ = (K g
proves the claim. Note that the disintegration is uniquely defined for /i almost
every 6 [15]. O

Even if this approach is only presented to formally derive the master equation
associated to this problem, and thus not needed in details, the following example
illustrates the previous result.

Example 3. Consider fi as combination of Dirac masses fi :=n"'> " | 8,. The
information process is F (-, mq) defined for f(m) = ( [ra zm(dz)—K)4 for a certain
level K > 0. Assume that for 1 < i < n, f(m;) = 0 and that the (m;)1<i<n are
ordered such that the sequence of time (t;)a<i<n defined by

(3.4) ti = 1inf{t > 0, f(Kymq1) # f(Kim;)}

satisfies 0 < t, < t,—1 < ... <ty <ty = 00. Then for any t € (ty1,tx] the belief
given by Proposition 3.1 is k=t Zle Okym -

3.4. Derivation of the master equation. The associated master equation is
derived formally in this section. We start by a development on functions on [0, 7] X
P(P(T%)) of the form

(35 Vit = [ [ curas],

for smooth G where (v,"");>¢ is the process constructed in the proof of Proposition

3.1 when pi <— p. For any dt > 0,
t+dt
(3.6) V(t,u) =E, [ G(v"")ds + V (t + dt, Vﬁri)} :
t
If the evolution of (¥"#")s>; has no reason to be smooth, because the information

is precisely through f, for p almost every m, (f(vI"*))s>; is smooth. Hence if G

is given as
1) Glw = [ W(fm)u(am)
P(TY)
for a smooth function ¥, then
t+dt
(3.8) (dt)~! GvI"")ds — G(p).

t dt—0

This leads, formally, to the PDE

(3.9) =0V = Alp, 1?1,3f} V] = G(p),



where A[u, b, f][V] is the operator ”defined” by

’

Y Vivg™) = Vin
(3.10) At V] = Jim |7
where (v,"");>0 is the process given by Proposition 3.1, when the starting belief is
1 and m the initial, unknown, repartition of players.

Clearly, because the evolution of (1,"");>¢ is neither smooth nor even well de-
fined, the domain of definition of A is not clear at all. We shall come back on this
question later on.

Fixing the strategies of the "other” players through the function b : [0, 7] x T¢ —
R?, the value function of a player is

(3.11)
Ult,x,n) =
T
inf Ep , {/ / [( X, m W (dm') + L(Xs, as)ds —l—/ Uo(Xr, m" vt (dm’)
a t P(Td) P(Td)

Hence, following the previous development, formally, U is a solution of

—0U — oAU + H(x, V,U) — Alp, b, f][U] = f(z, p),

(3.12) )
U(T7 Z, :u) = Uo(l‘, :u)

Where f and Uy are defined as in the previous section.
Replacing b by what should be the optimal strategies of the players, and reversing
time to lighten notations, one obtains the master equation

(3.13) :
U(O7 z, :u) = U07

which is posed on (0,00) x T¢ x A.

3.5. Mathematical analysis of the master equation. This section contains
a partial mathematical analysis of the master equation just derived. The notion
of monotone solutions introduced in [2, 3] is used to prove some properties of the
value functions for such MFG.

Even if the precise nature of the operator A is not established here, it possesses
the following properties.

(1) If there is no learning (e.g. if f is constant), then ;""" = (K};)xp for any
m and A is defined on smooth functions on A = P(P(T)).
(2) When evaluated on the minimum p* of a function V : P(P(T¢)) — R, one

should have A[u*,b, f][V] > 0 for any b, f.
14



(3) If, for some smooth function ¢, V' is a function of the form

(3.14) Vi = [ otmutam)
P(T4)
then, whatever the function f,
(3.15) Alp, b, fl[V] = / <5—¢, Am — div(bm)> p(dm).
P(T4) om

The first point is mainly a remark and only the third point is not immediate.
It is simply a consequence of the fact that because V' is linear, E, [V (v};")] =
V((K))gh).

Although the description of the operator A is quite poor at this time, the prop-
erties (2) and (3) above are sufficient to define a concept of monotone solutions
here.

The main advantage of monotone solutions is that they allow to define solutions
of (3.17) without using the operator A directly on U but on a large set of simpler
functions instead, namely functions of the form (3.14). To define precisely these
simpler functions, and to make the following more understandable, one needs to
use a duality between C(T?) and P(P(T¢)). As suggested by the computation
done in the blind case, we choose the following duality between ¢ € C(T?) and
p e M(P(TY)):

(3.16) wwwzﬁm)wwmmmmwm

The idea of monotone solutions consists in looking at minima of the function
W(t,p) == (U(t,~,u) — ¢, pp— v) for ¢ € C*(T?) and v € M(P(T?)). Formally, W
is a solution of
oW —o(AU + H(x,V,U),u—v)— Alu,—D,H(V,U), fl[W]
Indeed, remark that

(3.18)
A[p,, _DIJH<V:EU)> f] [W] = <A[M7 _DIJH<V;L’U)7 f] [ULM_V)—’—A[M? _DPH(V;L’U)v f] [\P]

where W : i/ — (U(pu) — ¢, 1’). The previous formula is just the equivalent of the
formula (fg) = f'g + ¢'f for the operator A. Now using (3.15) we deduce that

Using both the facts that on minima of W, Ay, —D,H(V,U), f][W] > 0, and
that WU is linear, we arrive at the

(3.17)

Definition 3.1. We say that a continuous function U : [0, T] x T¢ x A, smooth in
its second argument, is a value of the MFG with observed payments and unknown
repartition of players if :

15



any smooth function ¥ : [0,00) — R and any point (to, o) € (0, o
of minimum of (t,p) — (U(t,-,p) — ¢, —v) = I(t) on (0,19) X A,
following holds

%(to) + <—O'AU+H('7va>>:U’0 > < ( /JJO) Ho — V>

— (AU = ¢) = D,H(V,U) - V. (U - ¢), po) -
e the initial condition holds
(3.20) U(0,z, 1) = Up(x, 1)

Remark 3.2. The previous definition only involves the information of the pay-
ments through the set A, on which the value function is defined. Defining it on a
larger set than A would be meaningless since such belief are not coherent with the
model.

e for any C? function ¢ : T® — R, for any measure v € M(M(T9)), for
) X
the

(3.19)

Ideally, following Remark 2.3, one could hope to establish a uniqueness result
for value functions in the sense of Definition 3.1. However because of the nature
of the set A, we have not been able to prove such a result in a general framework.
The nature of the set A can be described with following.

Proposition 3.2. The set A is compact. As soon as f is neither one-to-one or
constant, A is not convex.

Proof. Consider (p,),>0, a A valued converging sequence in P(P(T¢)) whose limit
is fi. For allm > 0, denote g,, : T* — R such that yu, almost everywhere, f(m) = g,.
From the assumptions on f, we obtain that (g,),>o is compact in C(T¢). Because
for all n > 0,

(3.21) o= [, ),

passing to the limit in the previous equation, we deduce that (g,),>¢ converges
uniformly toward

(3.22) gi= /P L S

It easily follows that i almost everywhere, f(m) = g. Thus A is a closed (com-
pact) set.

If f is neither one-to-one or constant, take mq, my and mg such that f(m;) =
f(ms) # f(ms) and remark that 36,,, + 26,,, and d,,, belongs to A while none of
their (strict) convex combination does. O

Remark 3.3. Rigorously, A is not convex even if f is one-to-one. However in

this case, it is isomorphic to P(T4) which is convez.
16



Even if we were not able to establish a general result of uniqueness, we could
prove the following, which is commented immediately afterwards.

Theorem 3.1. If f and Uy are monotone, then two value functions U and V' of the
MFG, in the sense of Definition 3.1, are such that for any t > 0,u € A,m,m’ €

P(T9) such that f(m) = f(m') = (1)
(3.23) /T Ultw )~ Vb2, 10)(m — ) ) = 0.

Moreover, for any t > 0,m € P(T?), V,U(t,-,0m) = V.V (t, -, 0m).

Remark 3.4. The last part of the Theorem only states that when the players know
the repartition of players, only one profile of strategies is possible for the players,
which is the one in the case with full information. The equality can be improved to
equality of the value on Dirac masses following [3] under stronger assumptions on
the monotonicity of f. The first part of the result is a bit less classical. It allows
to characterize a set to which U —V is orthogonal, at any point t, u. Remark that
the larger is f~({f(w)}), the more information we have on the difference.

Proof. Assume that there exists ¢t > 0, u, v € A such that

(324) <U(t7 M) - V(ta V)a = V> = —C < 0.
Then, there exists § > 0 such that for any «, the function W defined by
(325) W(t’ Sy s V) = <U(t’l’b) - V(S7 V)7 B V) + O[(t - S>2 + 5(t + 8)

is not non-negative, with a minimum lower than —%co. Since A is compact and W
continuous, consider a minimum of W on [0, 7] x A? denoted by (L., S, fix, V).
Assume first that t,,s, > 0, from the definition of the value function, the fol-
lowing holds.
(3.26)
—20 — (0 AU + H(-,V,U), ps — i) — (cAV + H(-, V, V), v — p1s) >

(O = FCva)s e = ve) = (U = V, V(0 Am + div(D, H(V,U)m) )
—(V =U,Vy(cAm + div(D,H(V,V)m)v,)).

The previous is only the addition of the information from Definition 3.1 for U and

V. From the convexity of the Hamiltonian and the monotonicity of f, we obtain

that —20 > 0 which is a contradiction. If either t, or s, are equal to 0, then

using the continuity of U and V', we also obtain a contradiction taking a as big as
necessary.

Hence we deduce that for every u,v € A,t > 0,

We now explain how this information translates into the required result. Consider
i€ A, 0 € (0,1) and two measures my, my € P(T?) such that f(m;) = f(ms) =
17



f(i). Using (3.27) for p = (1 — )iz + 60,,,, and v = (1 — 0) i + 6,,,,, we obtain
that

(328) 9<U(t7 N) - V<t7 V)? 5m1 - §m2> > 0.
Dividing by # and letting § — 0 yields

(3.29) /Td Ult,z,p) — V(t,z, i) (my —ms)(dz) = 0.

(The equality is obtained by inverting the role of m; and ms.)

Consider now m € P(T%) and ji = 6,,. Taking my, my € P(T%), and 0 € (0, 1),
define 1t = 0(1-6)ym+om, and v = d(1_g)m+6m., and proceeding as immediately above,
we obtain

(3.30) Ut,x, i) — V(t,z,n)(my —me)(dz) =0,

Td

which proves the second part of the claim.
O

In the case in which f is strictly monotone, we can obtain more precise infor-
mation on the difference of two value functions. Before we state the two following
results, observe that if f is strictly monotone on P(T¢), then f is strictly monotone

on A.

Proposition 3.3. Assume that f is strictly monotone and that U and V' are two
monotone solutions in the sense of Definition 3.1. FixT' > 0, then fort <T

(3.31) sup U (¢, ) =V (t, 1)l < Ct,
neA

where C' only depends on H, f,'T" and

(3.32) M= sup [[U(t, - p)llc: + V(- v)ce
te[0,T],u,v

Proof. Let U and V' be two such solutions. Define the constant

(3.33) M:= sup |[U(t,-,p)llc: + V(- )l
te[0,T],u,v

Remark that
(3.34) Ks:= sup |[U(t,p) =Vt p)llo =~ _inf (Ut p) = VI(t,p),n),

tG[O,SLMEA tG[U:S]:MEAW

where the infimum in 7 is taken over bounded measure of mass 1 on P(T%). Fix
an arbitrary horizon 7' > 0 and consider § := % Define for n € M(T?),a, e > 0,

(3.35)  Wi(t,s,pu,v) = (U(t,pu) — Vs, Q’ p—v+en) +alt—s)*+ed(t+ s).



Consider a point (%, s, jc, v.) of minimum of W on [0,T]*> x A%. Assume that
te, se > 0. Because both U and V are value functions of the MFG, we obtain that
(3.36)

—2e6 — (cA(U =V)+ H(-,V,U)— H(-,V,V), pte — Ve +€n) >

<f(a ,u€) - f(a Vs)a fe — Ve + E77> - <U - ‘/a Vm(UAm + le(DpH(va)m),us»
—(V—=U,V(cAm +div(D,H(V,V)m)v.)).
The convexity of the Hamilton yields

(3.37) 20 N (oAU —~V) +H (-, V.U) = H(-,V,V),en) >
(f(ome) = f(ve), phe — ve +€n).

Letting € — 0 implies that any limit point (i, 7) of (e, Ve)eso satisfies
(3.38) (f(n) = (), —w)=0.
Hence from the strict monotonicity of f : f(i) = f(#), which itself implies

limeo f(pe) — f(ve) = 0 (maybe only along a subsequence). Coming back to
(3.37), using the monotonicity of f yields, after dividing by e

(3.39) 26 < M(1,n) + o(e).
This implies the required result since i) the case t. = 0 or s. = 0 does not raise
any difficulty, ii) 7" is chosen arbitrary. O

This previous result is an additional step in the direction of a suitable general
uniqueness result. In the case of a simple dependence of f in m, the following
result of uniqueness holds.

Theorem 3.2. Assume that f is strictly monotone and f(m) only depends on
m € P(T?) through its first moment E(m) := [r,am(dx). Then there is at most
one value function of the MFG in the sense of Definition 3.1.

Proof. Consider U and V' two value functions of the MFG in the sense of Definition
3.1. Thanks to Theorem 3.1, there exists two functions a and b on : [0,7] x A
such that U(t,z,u) = V(t,x, 1) + a(t, u) - x + b(t, ). Fix a time horizon t* and
define

(3.40) § = (2t*)"* sup {a(t, p) - 2, )

t<t*,n

where the supremum is taken over all n € M(M(T%)) such that (1,1) = 0 and
(1,|n]) < 1. Consider any such n € M(M(T%)) and define

(3.41)  W(t,s,p,v) = {U(t,pu) —V(s,v),pp— v +en) +alt —s)* +ed(t + s).

Denote (tc, S, fte, Ve) a point of minimum of W and assume %, s > 0. Reasoning
as in the proof of Proposition 3.3, we obtain that

(3.42) 20 < (—o AU = V) + H(-,V,U) — H(-,V,V), 1) + oe).
19



By construction of a and b, as well as by the regularity of H, the following holds.
(3.43) 20 < (C{la(te, pe)l, m) + ofe).

In the previous C'is simply the Lipschitz constant of H. Using the properties of n
yields

(3.44) 20 < Cla(te, pe)-

The definition of § leads to

(3.45) sup(a(t, p) - ,m) < t°Cla(te, pe)l.
n

and thus

(3.46) 0 < Ct*o.

Hence, if t* is small enough, compared to C' which depends only on H, § = 0. Since
t* is chosen independently of U and V/, it follows that the same argument can be
repeated on [t*, 2t*], so that 6 = 0 for any ¢*. This proves that a = 0 uniformly.
With a similar argument for n = Jy, for A the Lebesgue on T, it follows that b = 0
also, and thus that U = V', which proves the claim.

O

Remark 3.5. In the end, the key ingredient which makes the previous result true
and forbid us to extend it to general f, is that a control of the type

(3.47) (=AU —-V)+ H(-,V,U)— H(-,V,V),n)| < Csu/p(U -V,

holds for well chosen n' in the supremum above. Hence, the previous result can
be extended to situations in which such an estimate on the inverse problem of an
Hamitlon-Jacobi-Bellman equation holds, at least for functions U and V' which
satisfy the conclusion of Theorem 3.1.

3.6. Comments and future perspectives. As already mentioned above, this
study on MFG with unknown distribution of players and observed payments is not
a complete one and, hopefully, more results are to come. The approach proposed
here used the notion of monotone solutions of MFG master equations to obtain a
definition of solutions (Definition 3.1). If the lack of a general uniqueness result
pleads against this notion of solution, this definition is nonetheless helpful to prove
several properties of such value functions and a uniqueness result for a particular
case. It is possible that a more restrictive notion of solution will prove to be better
adapted to this problem.

In the study of this problem, a fundamental question which remains open is
the question of the existence of such a value function. Because the effect of the
observation of the payments possesses some similarity with the presence of a com-
mon noise in MFG, some approaches to prove existence are suggested from the

literature on MFG with common noise, maybe the most natural would be the one
20



of [7]. As already mentioned above, a direct application of this approach does
not semm feasible. However, if we restrict ourselves to beliefs which are combi-
nations of Dirac masses, such a strategy looks viable. It will then suffice to have
a uniform estimate on the continuity of U with respect to p to pass to the limit.
This approach is not presented here because we were not able to establish such a
continuity estimate.
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