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Abstract. Considering a simple economy, we derive a new Hamilton-Jacobi equation
which is satisfied by the value of a ”bubble” asset. We then show, by providing a
rigorous mathematical analysis of this equation, that a unique non-zero stable solution
exists under certain assumptions. The economic interpretation of this result is that,
if the bubble asset can produce more stable returns than fiat money, agents protect
themselves from hazardous situations through the bubble asset, thus forming a bubble’s
consensus value. Our mathematical analysis uses different ideas coming from the study
of semi-linear elliptic equations.
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1. Introduction

In his overlapping generations model of 1958, Samuelson [13] showed that, to protect
themselves against the perishability of the natural goods, agents can form a consensus
on the interest rate of a useless non-perishable good. With his simple model, conclusions
have been drawn that a consensus on a money is a simple and efficient way to transfer
capital to its future self. A main critic one could made to such a consequence is that,
because it is controlled by governments, and thus the subject of hazardous public policies,
the perishability of fiat money is questionable.

In this paper, we somehow reproduce the argument of Samuelson on money itself, by
showing that to protect themselves against public policies, agents can form a consensus
on useless goods, which do not need to be non-perishable, as long as they do not perish
too much. By doing so, the agents create another money than fiat money. A typical
example of such goods are cryptocurrencies, which present (at first) surprisingly stable
prices, given that they do not yield returns. The existence of equilibrium prices of such
bubble goods1 is now a classic topic of economics, stemming long before cryptocurrencies,
see for instance Tirole [14], even if such equilibrium prices are quite often relying on the

1By bubble good, or asset, we mean an asset which does not produce any return but still has a market
value.
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belief that the bubble will inflate. We shall see that in certain cases, the bubble can
remain surprisingly stable.

To explain the value of fiat money, Wallace [15] showed that, despite being a priori
a bubble, fiat money has a value because it facilitates exchanges on the market, thus
proposing a fundamental upon which to value fiat money.

Here we show that such other qualities are not necessary for a bubble good to have a
stable value, as long as it almost non-perishable, since it can then serve as a reserve or
assurance against future risks, thus placing ourselves much more in the spirit of Samuel-
son [13]. Note that the models mentioned above relied on overlapping generations, which
we do not particularly need to consider here. We shall simply consider agents with a
risk aversion and an economy with some risk on the public policy.

We shall end our paper, as Samuelson, with quite provocative conclusions. Namely we
show that a bubble’s consensus value (C value later on) exists and exhibits remarkable
stability properties, which can be seen as counterintuitive for a bubble asset. Those con-
clusions stand upon a thorough mathematical analysis of a new equation which we derive
as a consequence of a reached equilibrium on the price of the bubble asset. The main
economic force at play in our model is the risk aversion of the agents, which incentives
them to assure themselves against macro-economic risks, which they can do by forming
a consensus on another good, provided it enjoys ”sufficient” stability. This reasoning
is quite obvious in itself and would not need any new mathematical development to be
established. Nonetheless, our study puts this argument in a quantitative model that
allows for further developments. For instance, our model exhibits a threshold on the
”sufficient” stability of the bubble asset and since we can compute this threshold, we
can give a precise answer to what ”sufficient” means here.

We believe that attempts to derive, from rigorous mathematical analysis, stable equi-
librium prices for bubble assets are quite scarce, and to the best of our knowledge, the
work which bears some resemblance with this one is Biais, Rochet and Villeneuve [3],
upon which we comment more extensively later on in the paper.

The rest of our paper is organized as follows. In section 2, we derive from a quite
general model the equation to characterize equilibrium prices of bubble assets, which we
analyze in details in section 3. We then specify our model on the two examples of cryp-
tocurrencies and real estate later on in section 4, then giving economic interpretations
of our results, before concluding our work, namely with future directions of research.
In particular, even if we advise to read this paper as a whole, economists might be
tempted to jump directly from section 2 to section 4, while mathematicians could be
more interested in section 3.

2. Generic model and derivation of the main equation

We start by presenting our model in a simple one dimensional setting, before explain-
ing how it can be easily generalized later on.

2.1. The one dimensional case. Time is continuous. There are two goods in the
economy, one of them being the numeraire and the other one being called the ”other”
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good. There is a quantity K of ”other” good. There is a finite number of agents whose
decisions consists in choosing solely of the repartition of their capital between the two
goods. We assume that the state of the world is described by an element x ∈ [0, 1].
At time t, the state of the world is denoted by Xt ∈ [0, 1]. We assume that (Xt)t≥0 is
a Markov process on a standard probabilistic space. At time t, Xt is observed by all
agents and: is given as the strong solution of the stochastic differential equation

dXt = b(Xt)dt+ σdWt,

which is assumed to be reflected at 0 and 12. When the world is in the state x ∈ [0, 1], we
assume that the two goods produce (algebraic) interests given by r0(x) for the numeraire
and r1(x) for the other good. The functions r0, r1 : [0, 1]→ R are known by the agents.
Note that we do not assume that the goods produce other types of return, hence the
goods do not have intrinsic values.

Now that the physics of our model has been introduced, we can describe its econom-
ics. In the world we shall study, agents can exchange between them the two goods in a
market. If the exchanges of the same good do not bear any interest, the exchanges of
different goods yield the price of the second good expressed in the numeraire. We note pt
this price at time t. We assume that exchanges are always possible at the market price
pt. Given this price, the agents can value their portfolio. We assume that the agents
have a utility function U(·), which only depends on the value, in numeraire, of their
portfolio. Finally, because of the stationarity of our model, we assume that the agents
seek to maximize the growth rate of their portfolio made of the two goods, valued in the
numeraire.

An equilibrium price is a profile (pt)t≥0 such that for all time t ≥ 0, the agents will
agree to trade the goods at the price pt. Such a price is indeed an equilibrium since, a
priori, because the agents valued their portfolio in the numeraire, they are only ready
to buy the ”other” good, given that they anticipate that they will be able to sell it later
on, as nobody wants to be stuck with unproductive valueless items.

Our main objective is to characterize equilibrium prices in this market. In order to
do so, we shall make the important assumption that the price is a function of the state
of the economy, that is pt = u(Xt) for some function u : [0, 1]→ R.

Remark 1. We insist upon this assumption, as it is by no means obvious. In standard
economics literature, quite different equilibria have been considered, namely bubble ones.
Indeed if all agents share the common belief that pt is going to grow in an arbitrary
large fashion, then it seems standard to prove that they can reach a consensus on such
growth, thus proving existence of equilibria which are not of the form pt = u(Xt) but
rather pt = v(t,Xt). We do not claim that such equilibria do not exist, nor that their
study bears no interest, but our aim is here to show that a more intrinsic value of pt
exists as we shall see, and by more intrinsic we mean that it is only a function of the
state of the economy and not of some exterior belief.

2We omit here the reflection term for the sake of clarity.
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2.2. The decision problem of the agents. We now turn to the rather classical and
not so difficult problem of the agents. Since we assumed they are eternal, it is somehow
forced upon us to assume that they are going to maximize the growth rate of their
wealth. Consider an agent with a wealth of q, of course expressed in the numeraire, at
time t. The only decision of the agent is to decide how much it wants to invest in the
other good. Observe that it is true because, since there are no frictions on the market,
before making this investment decision, the agent can always sell all of what it owns in
the ”other” good, with the possibility of re-buying it instantly at the same price.

Proposition 1. If all the functions involved are smooth, the problem of maximization of
the growth rate of the portfolio of an agent with wealth q, when the economy is in state
x ∈ (0, 1), is given by

max
θ∈R

{
qU ′(q)

(
r0(x)(1− θ) + r1(x)θ + θ(u(x))−1(u′(x) · b(x) +

σ2

2
u′′(x))

+
U ′′(q)q

U ′(q)

θ2σ2

2u2(x)
|u′(x)|2

)}
,

where the maximization is done over θ, the proportion of ”other” good the agent needs
to buy.

This result is a consequence of the fact that, because of the assumption pt = u(Xt), we
can express the future price pt+dt thanks to Ito’s Lemma, as pt+dt = pt+dt{u′(Xt)b(Xt)+
σ2/2u′′(Xt)} + σ2/2|u′(Xt)|2dWt, as well as the fact that the numeraire yields r0(Xt)
and the ”other” good r1(Xt). The precise proof follows.

Proof. We shall omit the terms arising from the reflection of the process, as we are
able to do so if we consider everything before the first reaching time {0, 1}, which is an
adapted stopping time. If our agent decides to invest a proportion θ of its wealth at
time t in the ”other” good, then at time s ≥ t, its wealth Yt,s is given by

Yt,s = q(1− θ)e
∫ s
t r0(Xt′ )dt

′
+
θq

pt
pse

∫ s
t r1(Xt′ )dt

′
.

For s ∈ [t, t+ h], we have

dYt,s = r0(Xs)q(1− θ)e
∫ s
t r0(Xt′ )dt

′
ds+

θq

pt
e
∫ s
t r1(Xt′ )dt

′
dps + r1(Xs)

θq

pt
pse

∫ s
t r1(Xt′ )dt

′
ds.

Using Ito’s Lemma, we obviously have

dps = u′(Xs)b(Xs)ds+
u′′(Xs)σ

2

2
ds+ u′(Xs)σdWs.

Hence we arrive at

dYt,s =

[
r0(Xs)q(1− θ)e

∫ s
t r0(Xt′ )dt

′
+
θq

pt
e
∫ s
t r1(Xt′ )dt

′
(
u′(Xs)b(Xs)ds+

u′′(Xs)σ
2

2

)
+ r1(Xs)

θq

pt
pse

∫ s
t r1(Xt′ )dt

′
]
ds+

θq

pt
e
∫ s
t r1(Xt′ )dt

′
u′(Xs)σdWs.
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Thus, we can write down, once again thanks to Ito’s Lemma,

U (Yt,t+h) = U(q) +

∫ t+h

t
U ′ (Yt,s) dYt,s +

1

2

∫ t+h

t
U ′′(Yt,s)

θ2q2

p2
t

e2
∫ s
t r1(Xt′ )dt

′
σ2|∇xu(Xs)|2ds.

Taking the conditional expectation on Xt, we arrive at the relation

E[U (Yt,t+h) |Xt] = U(q) + E

[ ∫ t+h

t
U ′ (Yt,s) q

(
r0(Xs)(1− θ)e

∫ s
t r0(Xt′ )dt

′
+ r1(Xs)θ

u(Xs)

u(Xt)
e
∫ s
t r1(Xt′ )dt

′
+

+
θ

u(Xt)
e
∫ s
t r1(Xt′ )dt

′
(u′(Xs) · b(Xs) +

σ2

2
u′′(Xs))

+
U ′′(Yt,s)q

U ′(Yt,s)

θ2σ2

2u2(Xt)
e2

∫ s
t r1(Xt′ )dt

′ |u′(Xs)|2
)
ds|Xt

]
.

The agent then should choose θ to maximize its earning’s growth rate limh→0
E[U(Yt,t+h)|Xt]−U(q)

h ,
that is θ should be taken as the solution of

max
θ∈R

qU ′(q)

(
r0(Xt)(1− θ) + r1(Xt)θ + θ(u(Xt))

−1(u′(Xt) · b(Xt) +
σ2

2
u′′(Xt))

+
U ′′(q)q

U ′(q)

θ2σ2

2u2(Xt)
|u′(Xt)|2

)
.

�

The optimal level of investment θ always depends on the state of the economy x, and
in general on q as well. However, as usual for this type of problems, for some well known
utility functions we can find explicit functions of q. For instance, for the CRRA utility
function with parameter γ ∈ (0, 1), i.e. U(q) = q1−γ , we find that the optimal level of
investment does not depend on q and is given by

(1) θ∗(x) := u(x)
u(x)(r1(x)− r0(x)) + u′(x) · b(x) + σ2

2 u
′′(x)

γσ2|u′(x)|2
.

Remark 2. Note that the previous fraction is really of the form of the solution of
the famous Merton’s portfolio problem [12]. Indeed, the first term of the numerator
represents the return of the ”other” good relatively to the numeraire, the second term is
simply the infinitesimal variation of price while the denominator is the squared of the
volatility of the price pt multiplied by the risk parameter γ.

For the CARA utility function, U(q) = 1− e−cq for c > 0, we find that the optimal θ
is given by

(2) θ∗(q, x) = u(x)
u(x)(r1(x)− r0(x)) + u′(x) · b(x) + σ2

2 u
′′(x)

qcσ2|u′(x)|2
.

It now suffices to observe that in this case, the total demand, expressed in quantity of
”other” good is constant and does not depend on the wealth of the agent. It is given by
the quantity

(3)
u(x)(r1(x)− r0(x)) + u′(x) · b(x) + σ2

2 u
′′(x)

cσ2|u′(x)|2
.
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2.3. Market clearing. To close our model and finally derive the PDE satisfied by the
price function u, we need to specify how does the market clear. On the side of the supply,
the situation is quite simple, since we assume that the available quantity of ”other” good
is constant in time, given by K. Hence, we shall assume that any time, the supply is
given by K.

Remark 3. The fact that the supply K is constant might seem surprising since we made
the assumption that r1 6= 0. In cases where r1 might be positive, this assumption is hard
to verify, but in cases where r1 is non-positive, it simply means that at every period of
time, an amount of ”other” good is added in the economy to match what has been lost
through r1.

On the side of the demand, the question is much more subtle and it can be expected
since of course we are modelling prices of bubble assets!

In the case of the CARA utility function, we arrived at the conclusion that the
total demand of all agents was given by NDt where Dt is defined in (3). Hence, in this
situation, equaling supply and demand simply yields that

u(Xt)(r1(Xt)− r0(Xt)) + u′(Xt) · b(Xt) +
σ2

2
u′′(Xt) =

cKσ2

N
|u′(Xt)|2.

Since this relation has to be satisfied for all t and that the law of Xt has full support on
(0, 1), we arrive at the PDE

(4) u(x)(r1(x)− r0(x)) + u′(x) · b(x) +
σ2

2
u′′(x) =

cKσ2

N
|u′(x)|2 in (0, 1).

Since, the process is reflected at 0 and 1, the previous PDE is naturally associated with
Neumann boundary conditions u′(x) = 0 for x ∈ {0; 1}.

In the case of the CRRA utility funtion, since we derived an optimal fraction of
the wealth to be invested, independently of the individual wealth, we naturally obtain
the market clearing condition{

u(Xt)(r1(Xt)− r0(Xt)) + u′(Xt) · b(Xt) +
σ2

2
u′′(Xt)

}
Qt = γKσ2|u′(Xt)|2,

where Qt is the total wealth of the population. The dependence of Qt on time prevents
us to derive a proper PDE as in the previous case. The way we formulated our model,
this dependence cannot be avoided as the total wealth is supposed to evolve according to
evolution of Xt through the dependencies upon it of r0, r1 and u. Nonetheless, under the
assumption that, for some arbitrary exterior reasons, the total wealth of the population
which is possibly invested in the ”other” good is fixed at the level Q, we can indeed
arrive at the PDE

(5) u(x)(r1(x)− r0(x)) + u′(x) · b(x) +
σ2

2
u′′(x) =

γKσ2

Q
|u′(x)|2 in (0, 1),

also associated with homogeneous Neumann boundary conditions.
We remark that the form of this PDE is exactly the same of the previous one, which

justifies the mathematical analysis of such equations in the next section. We also insist
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upon the fact that our assumption that Qt is constant is by no means trivial nor free of
consequences. Nonetheless, we believe it gives an interesting idea of what can happen
for the price of such assets, and that it is a plausible approximation of the reality. Note
that a more sensible choice could have been to consider that3 Qt = Q[u](Xt). We are
then able to also obtain a PDE which is given by

(6) u(x)(r1(x)− r0(x)) + u′(x) · b(x) +
σ2

2
u′′(x) =

γKσ2

Q[u](x)
|u′(x)|2 in (0, 1),

Note that u ≡ 0 is always a solution of (4), (5) or (6), which is natural since, if
the anticipated price of the good is 0, no one is interested in it and its current price
is then also 0. In the next section, we provide a detailed mathematical analysis of
such equations. We shall prove that, under certain assumptions, a non-zero solution
of this PDE exists, and enjoys remarkable stability properties. We then come back on
economical implications of such a fact in section 4.

2.4. Generalization of our model. Before entering the mathematical analysis of the
next section, we indicate a simple and immediate extension of our model. Assume that
the process (Xt)t≥0 does not live in (0, 1) but rather in some smooth bounded domain
Ω ⊂ Rd, that it is still reflected at the boundary and a solution of the SDE

dXt = b(Xt)dt+ σ(x)dWt,

for (Wt)t≥0 a standard d dimensional Brownian motion. In addition, assume that the
”other” good produces, in a time interval [t, t + h], a revenue expressed in numeraire

equal to
∫ t+h
t f(Xs)ds, with f ≥ 0 a smooth given function. Note that f can be equal

to 0 in which case we fall back into the previous situation. In such a situation, the PDE
at which we arrive is given by

(7) u(x)(r1(x)− r0(x)) +∇xu(x) · b(x) +
σ2(x)

2
∆u(x) + f(x) = C|∇xu(x)|2 in Ω,

once again with homogeneous Neumann boundary conditions, and where C is equal to
cKσ2

N in the case of CARA utility, to γKσ2

Q in the case of the CRRA utility with constant

total wealth, and to γKσ2

Q[u] in the case of the CRRA utility with the assumption that

Qt = Q[u](Xt).

Remark 4. Note that the previous modelling is quite in the spirit of the mean field
games theory developed by the last two authors [8]. Indeed, even though no proper game
is introduced, we derived an equation satisfied by a macro-economic quantity (the price
function u) from the aggregation of small agents. Remark that we did not insisted upon it,
but we indeed assumed that agents were small in the sense that they are price takers, and
do not consider that they are going to affect the future price with their behaviour, which
amounts to say that they only have an infinitesimal effect on macroscopic quantities.

3The notation [·] stands for the fact that Q can depend on the whole function u, i.e. in a non-local
manner.
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3. Mathematical analysis

In this section, we analyze the equation

(8)

−ν∆u+
1

2
|∇xu|2 = a(x)u in Ω,

u(x) > 0 in Ω,

∂nu = 0 on ∂Ω.

where Ω is a smooth bounded domain of Rd, ν > 0 and a is a smooth function on which
additional assumptions shall be made later on.

Equation (8) is the general equation derived in the previous section, except for the
presence of the drift term b that we omit here since it does not play a strong role in
the following and adapting our results to the presence of b is trivial. Equation (8) is
a quadratic stationary Hamilton-Jacobi-Bellman equation. Compared to the existing
mathematical literature, the main novelty of (8) is the fact that a(·) depends on x
together with the quadratic non-linearity and the stationarity. If one of the previous
three elements was absent, then the problem will be classical, whereas here it exhibits
new properties.

As we shall see, (8) can be interpreted as a sort of non-linear version of Krein-Rutman
Theorem. This link will only be made explicit at the end of this section, but some ideas,
namely ones introduced by P.-L. Lions in [10] for Krein-Rutman like results, shall be
used during our analysis.

When it is well defined, we shall denote by λ1(A) the first (smallest) eigenvalue of the
differential operator A on Ω with Neumann boundary conditions. Furthermore, we shall
use the notation u >> 0 to indicate that the function u : Ω→ R is bounded from below
by a positive constant on Ω. Finally note that for operators A of the form −ν∆− a for
some smooth function a, λ1(A) is well defined and there is an associate eigenfunction
φ >> 0.

3.1. Existence and uniqueness. This section establishes the main result of the paper,
which is the existence and uniqueness of a solution to (8).

Theorem 1. Assume that

• λ1(−ν∆− a) < 0,
• minΩ a < 0.

Then, there exists a unique smooth solution of (8).

Remark 5. Note that that the first assumption implies that maxΩ a > 0.

We separate the proof of Theorem 1 into several lemmas. The first one is concerned
with the uniqueness part of the result and shall be crucial in the remaining of the paper.
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Lemma 1. Assume that the function a takes both positive and negative values. Consider
u >> 0 and v >> 0 two smooth functions on Ω. Assume that

−ν∆u+
1

2
|∇xu|2 ≤ a(x)u in Ω,

−ν∆v +
1

2
|∇xv|2 ≥ a(x)v in Ω.

Then, u ≤ v and either u = v or u < v.

Proof. The argument follows a technique from Laetsch [6]. Since Ω is compact, we can
consider θ ∈ (0, 1] defined by

θ = max{θ̃ ∈ [0, 1],∀x ∈ Ω, θ̃u(x) ≤ v(x)}.

Observe that uθ := θu is a solution of

−ν∆uθ +
1

2
|∇xuθ|2 +

(
1

2θ
− 1

2

)
|∇xuθ|2 ≤ a(x)uθ in Ω.

Hence, w = v − uθ is a solution of

−ν∆w +
1

2

(
|∇xv|2 − |∇xuθ|2

)
≥ a(x)w in Ω.

Define the vector field B with

B(x) =

(
|∇xv|2 − |∇xuθ|2

)
2(∇xv −∇xuθ)

.

Clearly, B is well defined and smooth. Observe now that both w ≥ 0 and

(9) −ν∆w +B · ∇xw ≥ a(x)w in Ω.

This implies that, for λ ≥ 0

(10) −ν∆w +B · ∇xw + (λ− a(x))w ≥ λw ≥ 0 in Ω.

Assume that w 6= 0. Then, choosing λ > 0 sufficiently large, by strong maximum
principle, ∀x ∈ Ω, w(x) > 0, which gives θ = 1.

If w = 0, then uθ solves the same inequality as v, since they are equal. This implies
that

(
1
2θ −

1
2

)
|∇xuθ|2 = 0 which either implies that θ = 1 or that u is constant, which

is impossible by construction. Thus θ = 1 and the result is proved. Note that if u 6= v,
then we already saw that θ = 1 and ∀x ∈ Ω, w(x) > 0. �

We now turn to an a priori estimate which shall constitute a compactness argument
in the existence part of Theorem 1.

Lemma 2. Assume that the function a takes both positive and negative values. Then,
there exists a constant C > 0 depending only on the function a and Ω such that, for any
smooth non-negative function u satisfying

−ν∆u+
1

2
|∇xu|2 ≤ a(x)u in Ω,

∂nu = 0 on ∂Ω,

we have u ≤ C.
9



Proof. Integrating the inequality and using the Neumann boundary condition leads to

(11)

∫
Ω
|∇u|2 ≤ 2 max

Ω
a

∫
Ω
u.

We now claim that the previous, together with the inequality satisfied by u, imply a
bound on ‖u‖∞ which depends only Ω and a. We first a show a bound in L1(Ω).
Assume that there exists a sequence (un)n≥0 as in the Lemma with ‖un‖L1 → ∞ as
n→∞. Observe that for all n, wn := un/‖un‖L1 satisfies

−ν∆wn + ‖un‖L1

1

2
|∇xwn|2 ≤ a(x)wn in Ω.

Integrating this relation we obtain that
∫

Ω |∇xwn|
2 → 0 as n → ∞. Furthermore, we

know that (wn)n≥0 is bounded in L1(Ω). Hence, it converges up to a subsequence toward
a positive constant denoted by c, in W 1,1(Ω) for instance. From the normalization in
L1(Ω), this constant is c = (

∫
Ω)−1. Hence the full sequence converges toward c. Thus,

passing to the limit in the previous equation in the sense of distributions implies that the
product aw ≥ 0, which is a contradiction because we assumed that a is not of constant
sign.

Hence, the set of such u is bounded in L1(Ω), thus, thanks to (11), it is bounded in
H1(Ω) since ‖u‖L1 + ‖∇u‖L2 is an equivalent norm in H1(Ω).

Take K > max a and for any u as in the Lemma, consider v the solution of

−ν∆v +Kv = a(x)u+Ku in Ω,

∂nv = 0 in ∂Ω.

Since u is bounded in H1(Ω) by a constant C(ν, a), we deduce that v is bounded in
H3(Ω) by a constant C(ν, a,K). Since u is a subsolution of the PDE satisfied by v, we

deduce that u ≤ v. If d < 6, v ∈ L∞(Ω), if d > 6, v ∈ L
2n
n−6 and v ∈ Lp(Ω) for any

p <∞ if d = 6, with the fact that each time, the Lp norm of v is bounded by a constant
C(ν, a,K). Hence, if d < 6 the result is proved. We have established that u is bounded

in say L
2n
n−5 (Ω) by some constant C(ν, a,K) if d ≥ 6. Repeating the same argument

then yields the required result.
�

We now provide the existence of (strictly) positive sub-solution of (8)

Lemma 3. Assume that λ1(−ν∆ − a) < 0, then there exists a smooth u0 >> 0 such
that

−ν∆u0 +
1

2
|∇xu0|2 ≤ a(x)u0 in Ω,

∂nu0 = 0 on ∂Ω.

Proof. Consider −λ := λ1(−ν∆− a) and u0 an associated positive eigenvector. Clearly,
since u0 is smooth, choosing αu0 instead of u0 for α > 0 sufficiently small yields that
1
2 |∇xu0|2 ≤ λu0. Hence, since −ν∆u0 + λu0 = a(x)u0, the result follows. �

We can now state the proof of our main result.
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Proof of Theorem 1. The uniqueness part is an immediate consequence of Lemma 1.
Take u0 given by Lemma 3, a constant K > 0 such that K > maxΩ a and consider now
the sequence (un)n≥0 defined by

−ν∆un+1 +
1

2
|∇xun+1|2 + (K − a(x))un+1 = Kun in Ω,

∂nun+1 = 0 on ∂Ω.

This sequence is well defined. We now prove that it is non-decreasing. Indeed, remark
that −ν∆u1 + 1

2 |∇xu1|2 + (K − a(x))u1 = Ku0 and that −ν∆u0 + 1
2 |∇xu0|2 + (K −

a(x))u0 ≤ Ku0. Hence, by standard comparison principle, we obtain that u1 ≥ u0. This
implies that u1 is also a sub-solution of the equation. Hence, arguing by induction, we
obtain (un) is a non-decreasing sequence of sub-solutions of the problem. Hence, from
Lemma 2, we deduce that the sequence is bounded. Hence, it converges toward some
limit u. By standard arguments of regularity, we obtain that (un) is bounded in some
functional space with high regularity, and thus u is indeed a solution of the problem,
namely by passing in the limit in the PDE satisfied by un+1. �

Remark 6. The previous proof yields a natural numerical scheme to compute the solu-
tion of (8).

3.2. On the necessity of the assumptions of the main theorem. We highlight
the fact that the assumptions of Theorem 1 are also necessary in some sense. Indeed,
we have the following result.

Proposition 2. Consider a smooth solution u ≥ 0 of

−ν∆u+
1

2
|∇xu|2 = a(x)u in Ω,

∂nu = 0 in ∂Ω.

If a 6= 0 and λ1(−ν∆− a) ≥ 0, then u = 0.

Proof. Denote λ := λ1(−ν∆−a) ≥ 0, and consider φ >> 0 an eigenfunction of −ν∆−a
associated to λ. Define α = min{β ≥ 0|u ≤ βφ} and w = u − αφ. By construction,
w ≤ 0. Furthermore,

−ν∆w − λw = a(x)w − 1

2
|∇xu|2 − λu in Ω.

Hence, for any K ≥ 0, we obtain that w ≤ 0 and

−ν∆w − λw − a(x)w +Kw ≤ Kw ≤ 0 in Ω.

Hence, by strong maximum principle, we obtain that w = 0, because −w >> 0 is not
possible since by construction, w(x) = 0 has a solution x ∈ Ω. Hence u = αφ. Hence u
is also an eigenfunction of −ν∆− a and thus we deduce that 1

2 |∇xu|
2 = −λu. Thus, u

is constant, but since a 6= 0, we find that u = 0. �

Proposition 3. If a ≥ 0 and there exists a solution u to (8), then a ≡ 0.

Proof. In this case, we have

−ν∆u+
1

2
|∇u|2 ≥ 0

which implies that u is constant. Hence, the only solution is a = 0. �
11



3.3. The case of a source term. We here explain how to adapt the results of the
previous section to the case of

(12)

−ν∆u+
1

2
|∇xu|2 = a(x)u+ f in Ω,

u >> 0,

∂nu = 0 on ∂Ω,

with the same assumption as above, but now f ≥ 0 is a smooth function. We have the
following result.

Theorem 2. Under the assumptions of Theorem 1, there exists a unique smooth solution
of (12).

Proof. We only insist briefly on the main differences with the previous case. The exis-
tence part is mostly left unchanged, as the existence also follows on the same type of a
priori estimate, except that now (11) is replaced by∫

Ω
|∇u|2 ≤ 2 max

Ω
a

∫
Ω
u+

∫
Ω
f.

On the other hand, uniqueness is obtained by adapting straightforwardly Lemma 1 and
realizing that if u is a smooth solution of

−ν∆ +
1

2
|∇xu|2 ≤ a(x)u+ f in Ω,

then uθ = θu is also a solution of the same inequality because θf ≤ f because f ≥ 0. �

As an immediate consequence of Lemma ??, we obtain also the following.

Corollary 1. If we denote by u(f) the solution of (12) for a smooth f ≥ 0, then u is
increasing with respect to f .

Remark 7. We insist upon the fact that the assumption f ≥ 0 is here crucial to extend
Lemma 1.

3.4. Optimal control interpretation. Consider an atomeless filtered probabilistic
space (Ω,A, (Ft)t≥0,P) and a Brownian motion (Wt)t≥0 upon it. We want to give a
stochastic optimal control interpretation of the solution of (8). Of course, the natural
associated stochastic optimal control problem is given, for an initial condition x ∈ Ω by

(13) inf
(αt)t≥0

1

2
E

[∫ +∞

0
e
∫ t
0 a(Xx,α

s )ds|αt|2dt
]
,

where the infimum is taken over square integrable admissible processes and the process
(Xx,α

t )t≥0 is given by

(14) Xx,α
t = x+

∫ t

0
αsds+

√
2νWt + kt,

where (kt)t≥0 is the standard process associated to the normal reflexion on the boundary
of Ω, see Lions and Sznitman [11]. Of course this problem is trivially solved by taking
αt = 0 for all t ≥ 0. This corresponds to the solution 0 of the PDE in (8). To develop
a more interesting analysis and recover the solution u of (8) given by Theorem 1, we

12



introduce a perturbed version of the previous problem. Namely, we take ε > 0 and we
are interested in

vε(x) := inf
(αt)t≥0

E

[∫ +∞

0
e
∫ t
0 a(Xx,α

s )ds

(
1

2
|αt|2 + ε

)
dt

]
,

where (Xx,α
t )t≥0 is still given as the solution of (14) and the infimum is still taken over

admissible squared integrable process. We want to establish the following result.

Proposition 4.

lim
ε→0+

‖vε − u‖∞ = 0.

In order to do so, we start by recalling a standard Lemma.

Lemma 4. Let x ∈ Ω and (Yt)t≥0 be the solution of

dYt = b(Yt)dt+
√

2νdWt + dkt,

with initial condition Y0 = x, where (Wt)t≥0 is a standard d dimensional Brownian
motion and (kt)t≥0 the process ensuring the fact that (Yt)t≥0 is reflected on ∂Ω given

by |k|t =
∫ t

0 1Ys∈∂Ωd|k|s and kt =
∫ t

0 n(Ys)d|k|s where n(x) is the unit outward normal
vector to Ω at x. Then,

E
[
e
∫ T
0 a(Yt)dt

]
=T→∞ O

(
e−λ1(−ν∆−b·∇−a)T

)
.

Proof. Consider φ >> 0 an eigenfunction associated to λ1(−ν∆− b · ∇ − a). From the
PDE satisfied by φ, we know from standard representation results that for any T > 0

φ(x) = E
[
e
∫ T
0 a(Yt)+λ1(−ν∆−b·∇−a)dtφ(YT )

]
.

Since there exists C > 0 such that C−1 ≤ φ ≤ C, the required result follows. �

Remark 8. This Lemma gives another point of view on the consequence of the assump-
tion λ1(−ν∆− a) < 0 in Theorem 1.

Hence, under the assumptions of Theorem 1, the exponential term in (13) grows
exponentially in time in expectation if the control 0 is chosen. Thus, it has to be
compensated in order for the integral to make sense, which prohibits the use of the
control 0, and thus justifies once again that the associated value cannot be 0.

Proof of Proposition 4. Consider uε the unique solution of

(15)

−ν∆uε +
1

2
|∇xuε|2 = a(x)uε + ε in Ω,

∂nuε = 0 on ∂Ω,

uε > 0 in Ω,

given by Theorem 2. We want to establish that vε = uε. Choosing α̃t = −∇xuε(Xx
t ),

we obtain, thanks to the previous Lemma that E[
∫∞

0 e
∫ t
0 a(Xx,α̃

s )dsdt] is bounded, hence
since ∇xuε is bounded, we also deduce that vε < ∞. Moreover, this also implies that
vε ≤ uε. Furthermore, we obviously have that vε ≥ −ε/(minΩ a) > 0. We can also
obtain using classical techniques of optimal control that vε is Lipschitz continuous, see
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for instance Fleming and Soner [5], section IV.84. In particular, we can now state that
the dynamic programing principle holds, and it is now classical to establish that vε is a
smooth solution of (15), and by uniqueness of such solutions, we obtain that uε = vε.
From Lemma 1, we know that vε ↓ v uniformly to some function v ≥ u as ε→ 0. From
the equation and standard elliptic regularity estimates, we know that v is smooth and
satisfies (8), and thus, by uniqueness, v = u and the result is proved.

�

Remark 9. Hence, if u is obviously not the value function of (13), it can be approxi-
mated by value functions of ”nearby” optimal control problems. In terms of control, the
interpretation is quite clear. If playing αt ≡ 0 is of course optimal, it leads to the integral
in front of it to be arbitrary large, namely because of the assumption λ1(−ν∆ − a) < 0
as highlighted in the next result. Somehow, the control αt := −∇xu(Xt) does not allow

to obtain a cost of 0, but it does allow for E[
∫∞

0 e
∫∞
0 a(Xs)dsdt] < ∞, which itself allow

for ”errors” in the control, without having to pay an infinite cost.

We believe that this is a strong argument for the stability of the solution of (8).

Remark 10. The optimal control interpretation of (8) that we just presented could also
give rise to another proof of uniqueness of solutions of (8), namely by showing that any
solution is equal to the limit of the vε.

3.5. Stability of the solution. We now indicate a stability argument of the unique
solution of (8) with respect to the term a.

Proposition 5. Consider a sequence (an)n≥0 of smooth real functions on Ω, bounded in
C1(Ω̄), such that for all n ≥ 0, the assumptions of Theorem 1 are satisfied. Assume also
that (an)n≥0 converges uniformly on Ω toward some smooth function a, which is not of
constant sign. Consider the sequence (un)n≥0 of unique solutions of (8) associated to
(an)n≥0. Then, (un)n≥0 converges uniformly toward a smooth non-negative function u,
and either λ1(−ν∆−a) = 0 and u = 0 or λ1(−ν∆−a) < 0 and u is the unique solution
of (8) associated to a.

Proof. From the proof of Lemma 2, we know that (un)n≥0 is a bounded sequence of
C2(Ω̄). Hence, it has a limit point v which satisfies (8). Either λ1(−ν∆ − a) = 0 and
thus v = 0, or λ1(−ν∆−a) < 0 and from the proof of Lemma 3, we can found a uniform
in n sub-solution φ of

−ν∆u+
1

2
|∇xu|2 ≤ an(x)u in Ω,

∂nu = 0 on ∂Ω,

such that φ is bounded from below by a positive constant. Hence, so is v. Thus by
Lemma 1, we conclude that the result holds. �

The previous result justifies the phenomenon which is described in Figure 1 below.

4The results of [5] are not directly usable in this context. Nonetheless the techniques of proof which
are used in the section we mentioned are, as they rely on the, local in time, controllability of the system.
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3.6. Some properties of the solution.

Proposition 6. Take λ > 0 and consider the unique solution uλ of

−ν∆uλ + λ
1

2
|∇xuλ|2 = a(x)uλ in Ω,

∂nu = 0 on ∂Ω,

uλ > 0 in Ω.

Then the map λ → uλ is decreasing with, for all x ∈ Ω, limλ→0 uλ(x) = +∞ and
limλ→0 uλ(x) = 0.

Proof. The fact that the map is decreasing simply follows from Lemma 1. The limit can
be observed easily by remarking that in this quadratic case, λuλ = u1. �

Proposition 7. Consider a1 ≤ a2 such that for i = 1, 2, the assumptions of Theorem 1
are satisfied. We note u1 and u2 the respective solutions. It then holds that u1 ≤ u2.

Proof. If this can be seen at the level of the optimal control interpretation, it is an
immediate consequence of Lemma 1 apply on a1 since (a2 − a1)u2 ≥ 0. �

We now prove a monotone property of the solution in a particular case.

Proposition 8. Assume that Ω = (0, 1), that the assumptions of Theorem 1 hold and
that a is a non-decreasing function, then so is u, the unique solution of (8).

Proof. Consider for ε > 0, uε the unique solution of

−ν∂xxuε +
1

2
|∂xuε|2 = a(x)uε + ε in Ω,

∂nuε = 0 on Ω.

Take 0 < x ≤ y < 1 and consider, in the optimal control formulation of the problem,
an optimal control αt for the problem starting in y. Note that we can choose αt =
−∂xu(t,Xt). The associated state evolves according to

dXy
t = αtdt+

√
2νdWt + dkt,

where (kt) is defined as in Lemma 4 and (Wt)t≥0 is a standard Brownian motion. Let us
now remark that we can also choose the same control αt in the problem starting form
x, that the associated state then evolves according to

dXx
t = αtdt+

√
2νdWt + dk′t,

for some other process (k′t)t≥0 defined similarly. From standard properties of reflected
diffusions [11], we know that, almost surely Xx

t ≤ X
y
t . Hence, since

uε(x)− uε(y) ≤ E

[∫ ∞
0

(
e
∫ t
0 a(Xx

s )ds − e
∫ t
0 a(Xy

s )ds
)(1

2
|αt|2 + ε

)
dt

]
.

The right hand side is non-positive since a is non-decreasing. Hence uε is non-decreasing
and the result follows by passing to the limit ε→ 0. �

15



Figure 1. Scheme of the sets of solution of (8) for various values of ε,
as functions of λ. The vertical axes can be interpreted as the ‖ · ‖∞ norm
of the solution. In green, ε = 0, in orange ε = ε′ > 0 and in blue ε > ε′.

3.7. Interpretation of Theorem 1 as a non-linear version of Krein-Rutman. In
this section we give a visual illustration of the type of phenomenon which is happening,
as well as mathematical justifications for the illustration we provide. We shall consider
here the problem

(16)

−ν∆u+ ε|∇xu|2 + u = λr(x)u in Ω,

u ≥ 0 in Ω,

∂nu = 0 on ∂Ω,

where r is a smooth non-negative non-constant function which vanishes at some point
such that λ1(−ν∆ − (r − 1)) = −1. In this section, ε and λ are parameters that are
aimed to vary.

From the assumptions on r, there exists λc ∈ (0, 1) such that for λ ∈ [0, λc], for any
ε > 0, the unique solution of (16) is 0. More precisely, λc is such that λ1(−ν∆−λcr+1) =
0. Then, for λ > λc, for any ε > 0 there are two solutions to (16), the constant 0 and
a solution uε,λ given by Theorem 1. Furthermore, thanks to Proposition 5, we know
that, for any ε > 0, the function λ → uε,λ is continuous on (λc, 1]. This provides, for
any ε > 0, a continuum of functions indexed by λ, which goes out from 0 at λc. (The
continuity when λ → λc is rather obvious). Finally, for ε′ < ε, we know that for any
λ > λc, uε′,λ ≥ uε,λ thanks to Proposition 6.

On the other hand, when ε = 0 we know that solutions of (16) are only possible for
λ = λc, locally around λc, and all those solutions are the same up to a multiplication by
a positive constant. These phenomena are summarized in Figure 1.

We believe that Figure 1 illustrates well the fact that the non-linearity, measured here
with ε bends the straight continuum of solutions of the linear problem into the branch
indexed by λ ∈ [λc, 1]. Moreover, this idea is somehow justified by the next result.
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Proposition 9. For any φ solution of (16) with ε = 0 and λ = λc, there exists a
function Λ : (0, 1]→ [λc,∞) such that

lim
ε→0
‖φ− uε,Λ(ε)‖∞ = 0.

The proof of this result relies on the following elementary Lemma.

Lemma 5. For ε > 0, the function ψ : λ→ ‖uε,λ‖∞ is increasing on [λc,∞).

Proof. Take ε > 0. Thanks to Lemma 1, we know that ψ is non-decreasing. Assume
that for some λ′ > λ ≥ λc, we have ψ(λ′) = ψ(λ). This implies that there exists some
x∗ ∈ Ω such that for all x ∈ Ω, uε,λ(x) ≤ uε,λ′(x) ≤ uε,λ′(x

∗) = uε,λ(x∗). Note that this
also has to be true if we replace λ′ by λ′′ for λ′′ ∈ [λ, λ′]. Evaluating the PDE in (16) at
x∗ for these functions and using the fact that x∗ is a point of maximum of uε,λ − uε,λ′ ,
we find out that

uε,λ(x∗)− uε,λ′(x∗) ≤ (λuε,λ(x∗)− λ′uε,λ′(x∗))r(x∗).
The previous leads to

0 ≤ λ(uε,λ(x∗)− uε,λ′(x∗))r(x∗) + r(x∗)uε,λ′(x
∗)(λ− λ′).

Since uε,λ′(x
∗) = uε,λ(x∗), this implies that r(x∗) = 0 since λ < λ′, which is not pos-

sible because, evaluating the PDE satisfied by uε,λ′ at x∗, this would lead to the fact
that uε,λ′(x

∗) = 0 which would imply uε,λ′ ≡ 0 which is a contradiction. Hence, ψ is
increasing. �

Proof of Proposition 9. Let φ be a solution of (16) with ε = 0 and λ = λc. For ε > 0,
consider Λ(ε) to be the unique λ such that ‖uε,λ‖∞ = ‖φ‖∞. Note that Λ(ε) is always
well defined for ε small enough thanks to Proposition 6. Arguing as in the proof of
Lemma 2, we deduce that (‖∇xuε,Λ(ε)‖L2)ε>0 is a bounded sequence. Hence, from the
PDE satisfied by uε,Λ(ε), we obtain additional regularity bounds and thus the fact that
(uε,Λ(ε))ε converges, up to a subsequence, uniformly toward some limit. Because this
limit has to satisfy the linear PDE, and because for all ε, ‖uε,Λ(ε)‖∞ = ‖φ‖∞, we indeed
obtain that (uε,Λ(ε))∞ converges uniformly toward φ. �

Furthermore, we can establish that, for any ε > 0, the branch of solutions (uε,λ)λ is
C∞.

Proposition 10. Take ε > 0 and λ > λc. There exists δ > 0 such that F : (λ−δ, λ+δ)→
L∞(Ω), λ→ uε,λ is C∞.

Proof. We start by showing that F is differentiable at λ. Consider v = F (λ + h) for
h > λc − λ. Denote u = F (λ). Define w = u− v and observe that

−ν∆w + ε|∇xu|2 − ε|∇xv|2 + w = −hr(x)u+ (λ+ h)r(x)w in Ω

Take h < 0. We already know that w >> 0 and ‖w‖∞ → 0 as h→ 0. Define gh = −h−1w
and observe that, using the convexity of x→ |x|2,

−ν∆gh +∇xv · ∇xgh + gh − (λ+ h)r(x)gh ≤ r(x)u in Ω.

This inequality, as well as the obvious ∂ngh = 0 on ∂Ω, yields a uniform bound on
‖gh‖∞. Indeed, the right hand side is constant, thus bounded when h → 0 and the
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elliptic operator on the left hand side satisfies the maximum principle. The latter can
be seen in the optimal control interpretation for instance, since its first eigenvalue is
positive. This implies for instance that gh is bounded from above by the unique solution
ṽ of

−ν∆ṽ + |∇xṽ|2 + ṽ − (λ+ h)r(x)ṽ = r(x)u in Ω,

∂nṽ = 0 on ∂Ω.

Furthermore, thanks to the stability of this equation, see Proposition 5, we know that ṽ
converges uniformly toward a bounded function when h→ 0.

Thus, because ‖gh‖∞ is bounded as h→ 0, we can indeed consider a weak limit g̃ of
gh as h→ 0. It is clearly the weak solution of

−ν∆g̃ +∇xu · ∇xg̃ + g̃ − λr(x)g̃ = r(x)u in Ω,

∂ng̃ = 0 on ∂Ω.

Such a solution is unique and the argument is once again that the elliptic operator on
the left hand side satisfies the maximum principle. Furthermore, we obtain that g̃ is C∞.
Taking h > 0 would have lead to the same thing. Hence, we showed that g̃ = F ′(λ).

The proof can now be concluded easily thanks to the implicit function theorem, and
we leave the details to the interested reader. �

3.8. Convergence of the time dependent problem. In this section we are interested
in the behaviour, when T →∞ of u(T, ·) for u the solution of

(17)

∂tu− ν∆u+
1

2
|∇xu|2 = a(x)u+ f in (0,∞)× Ω,

u|t=0 = u0,

∂nu = 0 on (0,∞)× ∂Ω,

where u0, f are smooth non-negative function on Ω. We have the following.

Theorem 3. There exists a unique smooth non-negative solution u of (17). If f 6= 0 or
u0 6= 0, then for all t > 0, x ∈ Ω, u(t, x) > 0 and, if the assumptions of Theorem 1 are
satisfied, limT→∞ ‖u(T, ·)− ū‖∞ = 0 where ū is the solution of (12) (or (8) in the case
f = 0) given by Theorem 2 (or Theorem 1 in the case f = 0).

Proof. The existence of such of function can be obtained through the optimal control
formula

u(t, x) := inf
(αs)s≤t

E

[∫ t

0
e
∫ s
0 a(Xx,α

t−u)du

(
1

2
|αt−s|2 + f(Xx,α

t−s)

)
ds+ e

∫ t
0 a(Xx,α

t−s)dsu0(Xx,α
t )

]
,

where (Xx,α
s )s≥0 is the process defined in (14). Since the previous formula also yields

that u is smooth (because so are a, f and u0), uniqueness comes from the regularity
of the solution, for instance by using standard Gronwall’s estimates on the difference of
two solutions.

Using the control αs = −∇xū(Xx,α
t−s) in the definition of u, we obtain thanks to Lemma

4 that, for all x ∈ Ω, lim supT→∞ u(T, x) ≤ ū(x) as

(18) lim
T→∞

E
[
e
∫ t
0 a(Xx,α

t−s)dsu0(Xx,α
t )

]
= 0.
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Approximating ū with optimal control like formulas as we did in section 3.4, we arrive
at the relation lim infT→∞ u(T, x) ≥ ū(x) since u0 ≥ 0.

It now remains to show that the convergence is uniform. Since (18) can be made
uniform in x, we deduce that u is uniformly bounded, hence that it is also the case
for its spatial gradient. Hence the result follows from the application of Ascoli-Arzela
Theorem on any sequence of the form (u(tn, ·))n≥0 for (tn)n≥0 an increasing sequence
which tends to +∞.

�

3.9. Extension to more general equations. We briefly comment on some extensions
of the results above. First, working with a purely quadratic Hamiltonian is not needed
and we could have studied equations of the form

(19)

−ν∆u+H(u,∇xu) = a(x)u in Ω,

u(x) > 0 in Ω,

∂nu = 0 on ∂Ω,

where H : R×Rd → R+ is an Hamiltonian upon which several assumptions can be made
depending on the extension considered.

For the comparison principle in Lemma 1, we only used two properties on the Hamil-
tonian: i) that it is locally Lipschitz and ii) that it satisfies for any v > 0, p ∈ Rd, θ ∈
(0, 1), H(θv, θp) < θH(v, p). And existence can be studied even without this assumption!

In the a priori estimate in Lemma 2, we only used the 2-homogeneity of the Hamilton-
ian and its non-negativity. Note that any p-homogeneity with p > 1 is sufficient. More-
over, L∞ estimates could have been obtained without exact homogeneity assumptions,
but simply with general inequality as the one we mentioned above. Also, techniques
stemming from the existence of explosive super-solution, such as in Lasry and Lions [7],
could also have been used to obtain such an L∞ estimate.

The same type of inequalities are sufficient in Lemma 3 and no particular additional
assumption is required in the proof of Theorem 1.

Furthermore, in the case b 6= 0, i.e. when the left hand side of the PDE of (8) contains
a term of the form −b · ∇xu, then all the previous statements remains correct but the
eigenvalue that we need to consider is obviously now λ1(−ν∆− b · ∇x − a).

Finally, under monotonicity assumptions such as in Proposition 8, we could consider
certain systems of coupled equations of the type (19).

4. Economic consequences and interpretation of the mathematical
analysis

We now specify particular instances of the class of models developed in section 2 and
analyze the consequences of the results we just proved.

4.1. Cryptocurrency bubbles as reserve goods against government instabili-
ties. We consider the case in which the numeraire is the fiat money (we assume that
there is only one government) and the other good is a cryptocurrency. The state of the
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world is described by a variable x that we take to be in Ω = [0, 1]. We assume that this
variable represents the results of the monetary policies of the government. When x is
close to 0, the taxes are low and inflation is also low. When x is close to 1, taxes are
high and the inflation is also high. Here we shall assume that the state of the economy
at time t is given by Xt where (Xt)t≥0 is the strong solution of the reflected SDE

dXt =
√

2νdWt

on (0, 1), for ν > 0. For the sake of shortness, we shall call cash the fiat money and
cryptos the cryptocurrencies.

In this model, the agents have the possibility to protect themselves from potential
future bad monetary policies by buying cryptos, which they can then resell for cash at
future times if they want to benefit from good monetary policies. Note that in order for
such strategies to be useful, a bubble needs to exist on the price of the cryptos, as they
do not produce any value in terms of cash. Hence their intrinsic value is 0 and they are
only bought if the agent speculate that it is going to be valued by other agents at later
times, which is the definition of a speculative bubble.

A natural consequence of the way we define this variable x is to take the return r0 of
the government money as a decreasing function of x. We make the assumptions that r0

is positive close to x = 0 and that it is negative close to x = 1.
On the other hand, the return r1 of the cryptocurrency is negative and a constant

in x. Recall that this return is measured in the unit of the cryptocurrency itself, so it
not depending on x is quite natural. The fact that it is negative arises from the actual
implementation of some Blockchain, such as the Bitcoin Blockchain. Indeed, the total
amount of Bitcoin is predetermined and some of it has to be spent to pay miners to
continue ensuring sufficient security on the Blockchain. Finally we note K the total
number of Bitcoins and N the number of agents in the economy. We focus here on the
CARA case, denote the CARA parameter by c and thus we note ε = c2Kν/N .

The PDE solved by the value of cryptos u is thus given by

(20)

−νu′′ + ε(u′)2 = (r1 − r0)(x)u in (0, 1),

u′ = 0 at 0 and 1,

u ≥ 0.

We shall say that a bubble consensus value (C-value) on crypto exists if there is a
non-negative non-zero solution of (20), and the solution u is then called the C-value.

4.2. Economic conclusions in the cryptocurrency case. We now translate the
mathematical results of Section 3 in this model.

1) If there is a possibility the government does bad enough and one that it outperforms
cryptos in terms of relative returns, then there is a unique C-value on crypto. It is thus
the unique equilibrium price of this bubble which is a function of the state of the economy.
Taking the effect of the government as variable, there is an explicit threshold after which
the C-value exists. It can be computed as the first eigenvalue of an elliptic operator.
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The C-value is stable (i.e. evolves continuously) with respect to all the parameters of the
model, except when ε→ 0, see section 4.5.

This fact follows simply from Theorem 1. The condition on λ1(−ν∂2
x + (r0 − r1)) will

be satisfied if r0 is sufficiently negative near x = 1, which amounts to say that close to
x = 1 (i.e. the worst case scenario for cash), inflation and taxes can be huge enough.
The assumption that (r0 − r1) should change sign is verified if r0(0) > r1. The stability
is a consequence of Proposition 5.

2) If a C-value exists, it increases as the economic conditions Xt deteriorates.

This is simply the consequence of Proposition 8.

3) If a C-value exists, it increases with the number of agents willing to buy it.

In our model, the number of agents is denoted by N . Hence, as N grows, ε decreases.
Hence, as a consequence of Proposition 6, the C-value increases (everywhere in x) as N
grows.

4) The C-value collapses to 0 if the return of cash increases above a certain threshold,
or if the one of crypto decreases below a certain level, or if there are no users, but not
if the number of users decreases below a certain positive threshold. Reversely, even if a
very small number of agents are interested in cryptos, it may be rational for the price of
cryptos not to be zero.

As we saw in the previous facts, as N decreases, the parameter ε increases, which thus
makes the value of the crypto decrease. However, this value u keeps satisfying u >> 0
for N > 0 arbitrary small and only reaches 0 when N = 0. However, if r0 increases
sufficiently so that λ1(−ν∂2

x + (r0 − r1)) = 0, then instantly u ≡ 0, even if r0(1) is still
negative. In particular, a bubble can exist with very few agents which are interested or
concerned. The bubble will then be quite small as the price u will be low, but it will
still exhibits the stability properties proved in section 3.

A reformulation of the previous fact can be.

4 bis) Even when very few persons were concerned about Bitcoin, it was rational that
a very small but non-zero C-value existed at the time.

5) The C-value increases as the return of cryptos increases. It also increases as the
return of fiat money decreases.

This is simply a consequence of Proposition 7.

6) The C-value has no particular monotonicity with respect to the parameter ν.
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This reminds us that ν does not play the role of risk but rather of volatility, as risk is
a consequence of both volatility and the variation of r0 in x. Nonetheless, if ν goes to
∞, the C-value goes to 0. This is easily seen as, dividing (20) by ν, we obtain that this
corresponds to the limit r0, r1 → 0.

4.3. The case of gold. From the point of view of our model, if we replace cryptocur-
rencies with gold, we end up with a fairly similar situation so we do not detail it here.

4.4. The model of Biais, Rochet and Villeneuve and the problem of the gov-
ernments. In [3], the authors proposed a model to justify the use of cryptocurrencies by
agents to protect themselves against non-benevolent governments which could increase
taxes and inflation. In their model, the randomness is apparent in the evolution of the
wealth on the individuals agents as well as on the possibility for the crypto asset to
crash. We took several ideas from their modelling even though we ended up with quite
a different problem. To transpose their models in terms of ours, we could say that in
their model, the government chooses the level of the variable Xt, which has no intrinsic
variation such as the one given by the SDE in our model. Idiosyncratic and exogenous
variations of the wealth of the agents could have been considered when deriving our
optimal investment θ∗, and the probability for the price of the ”other” good to go to 0
instantly could also been considered. Note that the last phenomenon simply consists,
given a constant intensity of crash β, to replace r1 by r1 − β.

In our framework, the best way to incorporate decisions from the government should
be to assume that the government controls the SDE which drives the evolution of (Xt)t≥0.
For instance, that the government could choose an adapted process (αt)t≥0 and (Xt)t≥0

would be given as the solution of

dXt = αtdt+ σdWt,

omitting the terms from the reflection to simplify the discussion. By committing to
setting αt = b(Xt) for a function b that the government chooses and enforces, the
problem of the latter is the one of the optimal control of the price u, solution of (4)
for instance, through the choice of b. This would very much be in the flavor of the
work [3]. Remark that in such cases, by choosing the function b, the government in fact
controls the λ1(−ν∂2

x− b∂x+ (r0− r1)). Hence, it can increase it so that the only bubble
equilibrium price is 0.5

Another, probably more realistic approach, could consists in saying that the govern-
ment does not commit to anything, and that at time t, it simply chooses the αt that
suits it best. In this framework, the government now faces a standard stochastic optimal
control problem, but it is coupled with the problem of all agents. In the limit of an
infinite number of agents, we then end up with a mean field game with a major player,
which is known to raise serious mathematical difficulties and of whose well-posedness is
not understood at the moment and only partial results are known [1, 4, 9, 2]. Even with
a finite number of agents, we end up with a general N + 1 players differential game, and
such games are known to be notoriously difficult to analyze.

5A simple computation yields that this is always possible for the government.
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4.5. Links with a no-arbitrage equation. We explain here why the case ε = 0 in
(20) is the no-arbitrage equation in such a model.

If there is no arbitrage, then we must find that for any time length h > 0, buying an
amount q of cryptos for a total value of 1 at time t and selling it at time t + h yields
no revenue compared to holding the amount 1 in cash between t and t+ dt. The latter
yields a revenue of

E
[
e
∫ t+h
t r0(Xs)ds|Xt

]
− 1,

while the former yields

E
[
e
∫ t+h
t r1(Xs)dsu(Xt+h)|Xt

]
u(Xt)

− 1.

Dividing the two equations by h and taking the limit h → 0 yields r0(Xt) in the first
expression and

r1(Xt) +
σ2u′′(Xt)

2u(Xt)

in the second one. Equalling the two quantities and multiplying by u(Xt) we find pre-
cisely (20) in the case ε = 0. This equation has only 0 as a solution in general, i.e. when
0 is not an eigenvalue of −σ2/2∂2

x + (r0 − r1).

Hence, in our model, risk neutral arbitragers should make the price of cryptos goes
to 0, while the risk aversion of our agents create a non-zero price. Indeed, in (20), the
parameter ε > 0 is a consequence of the risk aversion of our agents. Note that the price
of cryptos does not behave in a continuous manner in the limit ε → 0, as it explodes
whereas, at the limit, it is simply 0.

We believe this is a simple illustration of the classical fact that risk aversion prevents
in general arbitrages to be made.

4.6. The case of real estate in certain locations. We now want to explain why in
certain cases, real estate can play the same role as cryptos or gold for the protection
from potential bad public policies.

Of course real estate is not by essence limited in quantity, nor it is without any re-
turn. Nonetheless, in certain precise locations such as the centre of some major cities,
we argue that real estate indeed behaves as a bubble asset. First, it is clear that if one
add the location of the real estate, then we can freely assume that it exists in finite and
fixed quantity only, since such places typically do not allow for new buildings. Second,
even if real estate produces returns in the form of rent, the market price to buy real
estate seems arbitrary large compared to expected returns in rent that it can generates.
A good example of such a situation is Paris, where a firm limitation on rent has been
instated, and it has not translated in any sort of limit for the market price of real estate,
although strong french protection of the renter should translates in a rational decision to
rent its main house rather than buying it. We argue, quite classically, that it is because
a non-negligeable proportion of its price behaves as the price of a bubble asset, and that
the observed stability of this price can be explained by our mathematical analysis.
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Assuming in this case that real estate is the ”other” good, and that it produces a
revenue f ≥ 0 while facing, like cryptos, a constant negative interest rate because of
usual cost of exploitation, we end up with the following equation to characterize the
price of real estate

(21)

−νu′′ + ε(u′)2 = (r1 − r0)(x)u+ f in (0, 1),

u′ = 0 at 0 and 1,

u ≥ 0,

where ε is here given, in the case of the CRRA utility for instance, as ε = γKσ2/Q,
where γ is the risk paramter, K the volume of available real estate, σ the volatility
parameter and Q the total wealth. We keep r0 as a non-decreasing function. In this
case, under certain assumptions, the price of real estate may include a bubble C-value
component.

4.7. Stylized facts in the case of real estate. 7) Even with a strong limit on the
rent, the price of real estate can still be rationally arbitrary large in certain prestigious
locations, i.e. it can contain a C-value component which can be arbitrary large compared
to f .

Thanks to Theorem 2, we know that if r0 is such that λ1(−ν∂2
x + (r0− r1)) < 0, then

the unique solution of (21) is larger than the solution associated to the same problem
with f = 0. The latter goes to +∞ as ε→ 0, thus independently of f , hence the result.

8) The more unique the place, the higher its C-value component.

This can be seen once again through the monotone dependency of u in the parameter ε.
Indeed, the rarity of the place translates as the fact that the total number of comparable
places K decreases. Hence the result.

4.8. Have bubbles disappeared ? Not entirely. As we mentioned in section 2, we
are only able to characterize through our PDE prices which are of the form pt = u(Xt).
Hence, the uniqueness of solutions to (20) for instance, does not prevent a priori the
existence of more bubbly equilibrium paths, where pt just grows arbitrary large. We do
not believe this to be an issue as this type of phenomenon could occur on any good.

Another interesting way to see arbitrary large bubbles appear is through the equation
(6) obtained in the CRRA case. In the case where almost all wealth Qt is invested into
the ”other” good, it is natural to assume Q[u](x) is some linear function of u. In fact,
it could almost be Ku(x). In such a situation, even if a non-linearity is present in (6),
because it is homogenous of order 1 in u, our mathematical analysis completely fails as
the equation becomes homogenous of order 1, and thus, if it has a non-zero solution,
then it necessary have a infinite number of them. In particular, it has an arbitrary large
solutions, which we believe is an interesting way of understanding how unstable bubbles
can be created from a stable one.
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4.9. What constitues a potential bubble asset ? Following Samuelson [13] and
Wallace [15], several characteristics of money seem to be of importance: exchangeability,
non-perishability and uselessness. In our model, we did not focus on exchangeability
and assume that it is always the case. However we provided insights on the other two
properties and we now take the time to explain why.

The perishability of money can often be thought of in terms of inflation or interest
rates. In our model, we have proven that for a C-value to form on an asset, it needs to be
”less” perishable than fiat money, with a quantitative estimate of this non-perishability
which is quite non-obvious since it is measured through the sign of the first eigenvalue of
an elliptic operator. Hence, a low perishability is important, and a small one is tolerated
by the agent to form a C-value.

Our model and the analysis above does not need the bubble asset to be useless, which
can seem quite counterintuitive for such assets. In our model, agents buy the bubble
asset as an insurance, to protect themselves from inflation for instance. So it is natural
they have no problem with their asset being useful. Because we are not restricting
ourselves to bubble on money assets, this uselessness condition does not appear here.
Then the questions remains to understand why C-value seems to form in a stronger
manner on useless assets in practice. We believe that this may be due to the fact that
non-perishability and uselessness might be linked. Indeed, if an agent owns an extremely
useful good, it is possible that this agent anticipates the risk of this good to be taken
from him because of its usefulness, thus decreasing its non-perishability from its own
point of view.

5. Conclusion and future perspectives

We proposed a radically novel way to justify the stability of the price of certain bubble
assets. Our method relies on the mathematical analysis of a simple yet new PDE. We
have exhibited conditions under which it is rational for the agents to form a consensus
on a non zero price for assets which generates nothing, as it allows them to protect
themselves against public policies which are potentially armful to their portfolio in gov-
ernment money, or more generally in traditional assets. This bubble equilibrium price
enjoys very robust stability and uniqueness properties, and furthermore it can be char-
acterized as the unique positive solution of a quite simple but non-linear PDE.

Even though our story is not complete yet, we believe that this approach could be the
entry point for several studies. We indicate here three directions of investigation which
we think should bear some interest and upon which we are currently working.

• The derivation of the PDE at interest in the CRRA case could be addressed with
more care, in particular with regards to the variation of the total wealth.
• More generally, the demand of ”other” good could depend on the entire repar-

tition of wealth in the population, as in real life, borrowing constraints usually
prevents agents with low wealth to invest as much as they would like. This ex-
tension should lead to interesting modelings much more in the spirit of mean field
games [8]. The same goes for considering a population of heterogenous agents,
in their risk parameters for instance.

25



• We have explained that several goods can serve as protection. The natural fol-
lowing question is to understand why certain goods should be favored compared
to others. This type of questions leads to the study of coupled equations of the
form of (20), for which no mathematical analysis exists in the literature at the
moment, and that we are currently investigating.
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